Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Structures of an intramembrane vitamin K epoxide reductase homolog reveal control mechanisms for electron transfer.

Liu S, Cheng W, Fowle Grider R, Shen G, Li W.

Nat Commun. 2014;5:3110. doi: 10.1038/ncomms4110.

2.

Structure of a bacterial homologue of vitamin K epoxide reductase.

Li W, Schulman S, Dutton RJ, Boyd D, Beckwith J, Rapoport TA.

Nature. 2010 Jan 28;463(7280):507-12. doi: 10.1038/nature08720.

3.

Human vitamin K epoxide reductase and its bacterial homologue have different membrane topologies and reaction mechanisms.

Tie JK, Jin DY, Stafford DW.

J Biol Chem. 2012 Oct 5;287(41):33945-55. doi: 10.1074/jbc.M112.402941. Epub 2012 Aug 24.

4.

Vitamin K epoxide reductase prefers ER membrane-anchored thioredoxin-like redox partners.

Schulman S, Wang B, Li W, Rapoport TA.

Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15027-32. doi: 10.1073/pnas.1009972107. Epub 2010 Aug 9.

5.
6.

Structure and function of vitamin K epoxide reductase.

Tie JK, Stafford DW.

Vitam Horm. 2008;78:103-30. doi: 10.1016/S0083-6729(07)00006-4. Review.

PMID:
18374192
7.
8.
9.

Confirmation of warfarin resistance of naturally occurring VKORC1 variants by coexpression with coagulation factor IX and in silico protein modelling.

Müller E, Keller A, Fregin A, Müller CR, Rost S.

BMC Genet. 2014 Feb 4;15:17. doi: 10.1186/1471-2156-15-17.

10.

The membrane topology of vitamin K epoxide reductase is conserved between human isoforms and the bacterial enzyme.

Cao Z, van Lith M, Mitchell LJ, Pringle MA, Inaba K, Bulleid NJ.

Biochem J. 2016 Apr 1;473(7):851-8. doi: 10.1042/BJ20151223. Epub 2016 Jan 15.

PMID:
26772871
11.

Warfarin resistance in a French strain of rats.

Lasseur R, Longin-Sauvageon C, Videmann B, Billeret M, Berny P, Benoit E.

J Biochem Mol Toxicol. 2005;19(6):379-85.

PMID:
16421894
12.

Inhibition of bacterial disulfide bond formation by the anticoagulant warfarin.

Dutton RJ, Wayman A, Wei JR, Rubin EJ, Beckwith J, Boyd D.

Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):297-301. doi: 10.1073/pnas.0912952107. Epub 2009 Dec 15.

13.

Structural and functional insights into enzymes of the vitamin K cycle.

Tie JK, Stafford DW.

J Thromb Haemost. 2016 Feb;14(2):236-47. doi: 10.1111/jth.13217. Epub 2016 Jan 29. Review.

14.

Structural Modeling Insights into Human VKORC1 Phenotypes.

Czogalla KJ, Watzka M, Oldenburg J.

Nutrients. 2015 Aug 14;7(8):6837-51. doi: 10.3390/nu7085313. Review.

15.

Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family.

Bevans CG, Krettler C, Reinhart C, Watzka M, Oldenburg J.

Nutrients. 2015 Jul 29;7(8):6224-49. doi: 10.3390/nu7085281.

16.
18.

Conserved loop cysteines of vitamin K epoxide reductase complex subunit 1-like 1 (VKORC1L1) are involved in its active site regeneration.

Tie JK, Jin DY, Stafford DW.

J Biol Chem. 2014 Mar 28;289(13):9396-407. doi: 10.1074/jbc.M113.534446. Epub 2014 Feb 13.

19.

Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle.

Oldenburg J, Bevans CG, Müller CR, Watzka M.

Antioxid Redox Signal. 2006 Mar-Apr;8(3-4):347-53. Review.

PMID:
16677080
20.

Structural and functional insights into human vitamin K epoxide reductase and vitamin K epoxide reductase-like1.

Van Horn WD.

Crit Rev Biochem Mol Biol. 2013 Jul-Aug;48(4):357-72. doi: 10.3109/10409238.2013.791659. Epub 2013 Apr 30. Review.

PMID:
23631591

Supplemental Content

Support Center