Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor).

Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G, Cahen D.

Nano Lett. 2014 Feb 12;14(2):1000-4. doi: 10.1021/nl404454h. Epub 2014 Jan 31.

PMID:
24475878
2.

Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ.

Science. 2013 Oct 18;342(6156):341-4. doi: 10.1126/science.1243982.

3.

Photocurrent induced by conducting channels of hole transporting layer to adjacent photoactive perovskite sensitized TiO2 thin film: solar cell paradigm.

Ameen S, Akhtar MS, Seo HK, Shin HS.

Langmuir. 2014 Nov 4;30(43):12786-94. doi: 10.1021/la502398x. Epub 2014 Oct 21.

PMID:
25296009
4.

Lead methylammonium triiodide perovskite-based solar cells: an interfacial charge-transfer investigation.

Xu X, Zhang H, Cao K, Cui J, Lu J, Zeng X, Shen Y, Wang M.

ChemSusChem. 2014 Nov;7(11):3088-94. doi: 10.1002/cssc.201402566. Epub 2014 Sep 11.

PMID:
25213607
5.

A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability.

Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H.

Science. 2014 Jul 18;345(6194):295-8. doi: 10.1126/science.1254763.

6.

Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length.

Zhao Y, Nardes AM, Zhu K.

J Phys Chem Lett. 2014 Feb 6;5(3):490-4. doi: 10.1021/jz500003v. Epub 2014 Jan 22.

PMID:
26276597
7.

Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes.

Rong Y, Ku Z, Mei A, Liu T, Xu M, Ko S, Li X, Han H.

J Phys Chem Lett. 2014 Jun 19;5(12):2160-4. doi: 10.1021/jz500833z. Epub 2014 Jun 10.

PMID:
26270509
8.

Control of charge dynamics through a charge-separation interface for all-solid perovskite-sensitized solar cells.

Ogomi Y, Kukihara K, Qing S, Toyoda T, Yoshino K, Pandey S, Momose H, Hayase S.

Chemphyschem. 2014 Apr 14;15(6):1062-9. doi: 10.1002/cphc.201301153. Epub 2014 Mar 6.

PMID:
24604610
9.

Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals.

Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J.

Science. 2015 Feb 27;347(6225):967-70. doi: 10.1126/science.aaa5760. Epub 2015 Jan 29.

10.

General working principles of CH3NH3PbX3 perovskite solar cells.

Gonzalez-Pedro V, Juarez-Perez EJ, Arsyad WS, Barea EM, Fabregat-Santiago F, Mora-Sero I, Bisquert J.

Nano Lett. 2014 Feb 12;14(2):888-93. doi: 10.1021/nl404252e. Epub 2014 Jan 10.

PMID:
24397375
11.

Light-Induced Increase of Electron Diffusion Length in a p-n Junction Type CH3NH3PbBr3 Perovskite Solar Cell.

Kedem N, Brenner TM, Kulbak M, Schaefer N, Levcenko S, Levine I, Abou-Ras D, Hodes G, Cahen D.

J Phys Chem Lett. 2015 Jul 2;6(13):2469-76. doi: 10.1021/acs.jpclett.5b00889. Epub 2015 Jun 15.

PMID:
26266721
12.

Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films.

Yin J, Cortecchia D, Krishna A, Chen S, Mathews N, Grimsdale AC, Soci C.

J Phys Chem Lett. 2015 Apr 16;6(8):1396-402. doi: 10.1021/acs.jpclett.5b00431. Epub 2015 Apr 1.

PMID:
26263141
13.

Direct Observation of Long Electron-Hole Diffusion Distance in CH3NH3PbI3 Perovskite Thin Film.

Li Y, Yan W, Li Y, Wang S, Wang W, Bian Z, Xiao L, Gong Q.

Sci Rep. 2015 Sep 29;5:14485. doi: 10.1038/srep14485. Erratum in: Sci Rep. 2016;6:20265.

14.

Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells.

Li J, Niu G, Li W, Cao K, Wang M, Wang L.

Nanoscale. 2016 Aug 7;8(29):14163-70. doi: 10.1039/c6nr03359h. Epub 2016 Jul 7.

PMID:
27385565
15.

Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.

Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Grätzel M.

J Am Chem Soc. 2012 Oct 24;134(42):17396-9. doi: 10.1021/ja307789s. Epub 2012 Oct 11.

PMID:
23043296
16.

Perovskite Solar Cells: Beyond Methylammonium Lead Iodide.

Boix PP, Agarwala S, Koh TM, Mathews N, Mhaisalkar SG.

J Phys Chem Lett. 2015 Mar 5;6(5):898-907. doi: 10.1021/jz502547f. Epub 2015 Feb 26.

PMID:
26262670
17.

Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis.

Giorgi G, Fujisawa J, Segawa H, Yamashita K.

J Phys Chem Lett. 2013 Dec 19;4(24):4213-6. doi: 10.1021/jz4023865. Epub 2013 Nov 27.

PMID:
26296167
18.

Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell.

Bergmann VW, Weber SA, Javier Ramos F, Nazeeruddin MK, Grätzel M, Li D, Domanski AL, Lieberwirth I, Ahmad S, Berger R.

Nat Commun. 2014 Sep 22;5:5001. doi: 10.1038/ncomms6001.

PMID:
25242041
19.

An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide.

Christians JA, Fung RC, Kamat PV.

J Am Chem Soc. 2014 Jan 15;136(2):758-64. doi: 10.1021/ja411014k. Epub 2013 Dec 30.

PMID:
24350620
20.

Transition from the Tetragonal to Cubic Phase of Organohalide Perovskite: The Role of Chlorine in Crystal Formation of CH3NH3PbI3 on TiO2 Substrates.

Wang Q, Lyu M, Zhang M, Yun JH, Chen H, Wang L.

J Phys Chem Lett. 2015 Nov 5;6(21):4379-84. doi: 10.1021/acs.jpclett.5b01682. Epub 2015 Oct 22.

PMID:
26538049

Supplemental Content

Support Center