Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90


Structural characterization of a new N-substituted pantothenamide bound to pantothenate kinases from Klebsiella pneumoniae and Staphylococcus aureus.

Hughes SJ, Antoshchenko T, Kim KP, Smil D, Park HW.

Proteins. 2014 Jul;82(7):1542-8. doi: 10.1002/prot.24524. Epub 2014 Feb 18.


Crystal structures of Klebsiella pneumoniae pantothenate kinase in complex with N-substituted pantothenamides.

Li B, Tempel W, Smil D, Bolshan Y, Schapira M, Park HW.

Proteins. 2013 Aug;81(8):1466-72. doi: 10.1002/prot.24290. Epub 2013 Jul 2.


Variation in pantothenate kinase type determines the pantothenamide mode of action and impacts on coenzyme A salvage biosynthesis.

de Villiers M, Barnard L, Koekemoer L, Snoep JL, Strauss E.

FEBS J. 2014 Oct;281(20):4731-53. doi: 10.1111/febs.13013. Epub 2014 Oct 7.


Structure-activity relationships and enzyme inhibition of pantothenamide-type pantothenate kinase inhibitors.

Virga KG, Zhang YM, Leonardi R, Ivey RA, Hevener K, Park HW, Jackowski S, Rock CO, Lee RE.

Bioorg Med Chem. 2006 Feb 15;14(4):1007-20. Epub 2005 Oct 5.


Exploring structural motifs necessary for substrate binding in the active site of Escherichia coli pantothenate kinase.

Awuah E, Ma E, Hoegl A, Vong K, Habib E, Auclair K.

Bioorg Med Chem. 2014 Jun 15;22(12):3083-90. doi: 10.1016/j.bmc.2014.04.030. Epub 2014 Apr 24.


Structure of the type III pantothenate kinase from Bacillus anthracis at 2.0 A resolution: implications for coenzyme A-dependent redox biology.

Nicely NI, Parsonage D, Paige C, Newton GL, Fahey RC, Leonardi R, Jackowski S, Mallett TC, Claiborne A.

Biochemistry. 2007 Mar 20;46(11):3234-45. Epub 2007 Feb 27.


Prokaryotic type II and type III pantothenate kinases: The same monomer fold creates dimers with distinct catalytic properties.

Hong BS, Yun MK, Zhang YM, Chohnan S, Rock CO, White SW, Jackowski S, Park HW, Leonardi R.

Structure. 2006 Aug;14(8):1251-61.


Structural and biochemical characterization of compounds inhibiting Mycobacterium tuberculosis pantothenate kinase.

Björkelid C, Bergfors T, Raichurkar AK, Mukherjee K, Malolanarasimhan K, Bandodkar B, Jones TA.

J Biol Chem. 2013 Jun 21;288(25):18260-70. doi: 10.1074/jbc.M113.476473. Epub 2013 May 9.


Discovery of Potent Pantothenamide Inhibitors of Staphylococcus aureus Pantothenate Kinase through a Minimal SAR Study: Inhibition Is Due to Trapping of the Product.

Hughes SJ, Barnard L, Mottaghi K, Tempel W, Antoshchenko T, Hong BS, Allali-Hassani A, Smil D, Vedadi M, Strauss E, Park HW.

ACS Infect Dis. 2016 Sep 9;2(9):627-641. Epub 2016 Aug 3.


A pantothenate kinase from Staphylococcus aureus refractory to feedback regulation by coenzyme A.

Leonardi R, Chohnan S, Zhang YM, Virga KG, Lee RE, Rock CO, Jackowski S.

J Biol Chem. 2005 Feb 4;280(5):3314-22. Epub 2004 Nov 17.


Invariance and variability in bacterial PanK: a study based on the crystal structure of Mycobacterium tuberculosis PanK.

Das S, Kumar P, Bhor V, Surolia A, Vijayan M.

Acta Crystallogr D Biol Crystallogr. 2006 Jun;62(Pt 6):628-38. Epub 2006 May 12.


Plant coenzyme A biosynthesis: characterization of two pantothenate kinases from Arabidopsis.

Tilton GB, Wedemeyer WJ, Browse J, Ohlrogge J.

Plant Mol Biol. 2006 Jul;61(4-5):629-42.


Structural basis for the feedback regulation of Escherichia coli pantothenate kinase by coenzyme A.

Yun M, Park CG, Kim JY, Rock CO, Jackowski S, Park HW.

J Biol Chem. 2000 Sep 8;275(36):28093-9.


Pantothenamides are potent, on-target inhibitors of Plasmodium falciparum growth when serum pantetheinase is inactivated.

Spry C, Macuamule C, Lin Z, Virga KG, Lee RE, Strauss E, Saliba KJ.

PLoS One. 2013;8(2):e54974. doi: 10.1371/journal.pone.0054974. Epub 2013 Feb 6.


Structural basis for substrate binding and the catalytic mechanism of type III pantothenate kinase.

Yang K, Strauss E, Huerta C, Zhang H.

Biochemistry. 2008 Feb 5;47(5):1369-80. doi: 10.1021/bi7018578. Epub 2008 Jan 11.


The structure of the pantothenate kinase.ADP.pantothenate ternary complex reveals the relationship between the binding sites for substrate, allosteric regulator, and antimetabolites.

Ivey RA, Zhang YM, Virga KG, Hevener K, Lee RE, Rock CO, Jackowski S, Park HW.

J Biol Chem. 2004 Aug 20;279(34):35622-9. Epub 2004 May 10.


Location and conformation of pantothenate and its derivatives in Mycobacterium tuberculosis pantothenate kinase: insights into enzyme action.

Chetnani B, Kumar P, Abhinav KV, Chhibber M, Surolia A, Vijayan M.

Acta Crystallogr D Biol Crystallogr. 2011 Sep;67(Pt 9):774-83. doi: 10.1107/S0907444911024462. Epub 2011 Aug 9.


Mycobacterium tuberculosis pantothenate kinase: possible changes in location of ligands during enzyme action.

Chetnani B, Das S, Kumar P, Surolia A, Vijayan M.

Acta Crystallogr D Biol Crystallogr. 2009 Apr;65(Pt 4):312-25. doi: 10.1107/S0907444909002170. Epub 2009 Mar 19.


Modulation of pantothenate kinase 3 activity by small molecules that interact with the substrate/allosteric regulatory domain.

Leonardi R, Zhang YM, Yun MK, Zhou R, Zeng FY, Lin W, Cui J, Chen T, Rock CO, White SW, Jackowski S.

Chem Biol. 2010 Aug 27;17(8):892-902. doi: 10.1016/j.chembiol.2010.06.006.

Supplemental Content

Support Center