Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Folate receptor-targeting gold nanoclusters as fluorescence enzyme mimetic nanoprobes for tumor molecular colocalization diagnosis.

Hu D, Sheng Z, Fang S, Wang Y, Gao D, Zhang P, Gong P, Ma Y, Cai L.

Theranostics. 2014 Jan 2;4(2):142-53. doi: 10.7150/thno.7266. eCollection 2014.

2.

Distinguishing folate-receptor-positive cells from folate-receptor-negative cells using a fluorescence off-on nanoprobe.

Feng D, Song Y, Shi W, Li X, Ma H.

Anal Chem. 2013 Jul 2;85(13):6530-5. doi: 10.1021/ac401377n. Epub 2013 Jun 21.

PMID:
23751075
3.

Gold nanoprobes-based resonance Rayleigh scattering assay platform: Sensitive cytosensing of breast cancer cells and facile monitoring of folate receptor expression.

Cai HH, Pi J, Lin X, Li B, Li A, Yang PH, Cai J.

Biosens Bioelectron. 2015 Dec 15;74:165-9. doi: 10.1016/j.bios.2015.06.012. Epub 2015 Jun 11.

PMID:
26141102
4.

Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging.

Zhou Z, Zhang C, Qian Q, Ma J, Huang P, Zhang X, Pan L, Gao G, Fu H, Fu S, Song H, Zhi X, Ni J, Cui D.

J Nanobiotechnology. 2013 May 29;11:17. doi: 10.1186/1477-3155-11-17.

5.

Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy.

Chen H, Li S, Li B, Ren X, Li S, Mahounga DM, Cui S, Gu Y, Achilefu S.

Nanoscale. 2012 Sep 28;4(19):6050-64. doi: 10.1039/c2nr31616a. Epub 2012 Aug 28.

PMID:
22930451
6.

Folate receptor-targeted aggregation-enhanced near-IR emitting silica nanoprobe for one-photon in vivo and two-photon ex vivo fluorescence bioimaging.

Wang X, Morales AR, Urakami T, Zhang L, Bondar MV, Komatsu M, Belfield KD.

Bioconjug Chem. 2011 Jul 20;22(7):1438-50. doi: 10.1021/bc2002506. Epub 2011 Jul 1.

7.

SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation.

Wang Z, Zong S, Chen H, Wang C, Xu S, Cui Y.

Adv Healthc Mater. 2014 Nov;3(11):1889-97. doi: 10.1002/adhm.201400092. Epub 2014 May 26.

PMID:
24862088
8.

pH-responsive gold nanoclusters-based nanoprobes for lung cancer targeted near-infrared fluorescence imaging and chemo-photodynamic therapy.

Xia F, Hou W, Zhang C, Zhi X, Cheng J, de la Fuente JM, Song J, Cui D.

Acta Biomater. 2018 Mar 1;68:308-319. doi: 10.1016/j.actbio.2017.12.034. Epub 2017 Dec 30.

PMID:
29292171
9.

Facile preparation of rare-earth based fluorescence/MRI dual-modal nanoprobe for targeted cancer cell imaging.

Huang S, Chen P, Xu C.

Talanta. 2017 Apr 1;165:161-166. doi: 10.1016/j.talanta.2016.12.048. Epub 2016 Dec 21.

PMID:
28153236
10.

Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe.

Liu JM, Chen JT, Yan XP.

Anal Chem. 2013 Mar 19;85(6):3238-45. doi: 10.1021/ac303603f. Epub 2013 Mar 4.

PMID:
23413985
11.

Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH.

Ding C, Tian Y.

Biosens Bioelectron. 2015 Mar 15;65:183-90. doi: 10.1016/j.bios.2014.10.034. Epub 2014 Oct 18.

PMID:
25461156
12.

Synthesis of novel folate conjugated fluorescent nanoparticles for tumor imaging.

Hou J, Zhang Q, Li X, Tang Y, Cao MR, Bai F, Shi Q, Yang CH, Kong DL, Bai G.

J Biomed Mater Res A. 2011 Dec 15;99(4):684-9. doi: 10.1002/jbm.a.33187. Epub 2011 Sep 12.

PMID:
21913319
13.

In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles.

Zhang J, Li C, Zhang X, Huo S, Jin S, An FF, Wang X, Xue X, Okeke CI, Duan G, Guo F, Zhang X, Hao J, Wang PC, Zhang J, Liang XJ.

Biomaterials. 2015 Feb;42:103-11. doi: 10.1016/j.biomaterials.2014.11.053. Epub 2014 Dec 15.

PMID:
25542798
14.

Silica-encapsulated Gd3+-aggregated gold nanoclusters for in vitro and in vivo multimodal cancer imaging.

Wu X, Li C, Liao S, Li L, Wang T, Su Z, Wang C, Zhao J, Sui C, Lin J.

Chemistry. 2014 Jul 14;20(29):8876-82. doi: 10.1002/chem.201403202. Epub 2014 Jun 20.

PMID:
24954728
15.

Characterization of a fluorescence probe based on gold nanoclusters for cell and animal imaging.

Chen H, Li B, Wang C, Zhang X, Cheng Z, Dai X, Zhu R, Gu Y.

Nanotechnology. 2013 Feb 8;24(5):055704. doi: 10.1088/0957-4484/24/5/055704. Epub 2013 Jan 11.

PMID:
23307109
16.

Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation.

Yu XF, Sun Z, Li M, Xiang Y, Wang QQ, Tang F, Wu Y, Cao Z, Li W.

Biomaterials. 2010 Nov;31(33):8724-31. doi: 10.1016/j.biomaterials.2010.07.099. Epub 2010 Aug 21.

PMID:
20728213
17.

Real time monitoring of biomaterial-mediated inflammatory responses via macrophage-targeting NIR nanoprobes.

Zhou J, Tsai YT, Weng H, Baker DW, Tang L.

Biomaterials. 2011 Dec;32(35):9383-90. doi: 10.1016/j.biomaterials.2011.08.064. Epub 2011 Sep 3.

18.

BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer.

Wang K, Ruan J, Qian Q, Song H, Bao C, Zhang X, Kong Y, Zhang C, Hu G, Ni J, Cui D.

J Nanobiotechnology. 2011 May 25;9:23. doi: 10.1186/1477-3155-9-23.

19.

One-step facile synthesis of hyaluronic acid functionalized fluorescent gold nanoprobes sensitive to hyaluronidase in urine specimen from bladder cancer patients.

Cheng D, Han W, Yang K, Song Y, Jiang M, Song E.

Talanta. 2014 Dec;130:408-14. doi: 10.1016/j.talanta.2014.07.005. Epub 2014 Jul 10.

PMID:
25159428
20.

Molecular recognition of proteolytic activity in metastatic cancer cells using fluorogenic gold nanoprobes.

Hong Y, Ku M, Heo D, Hwang S, Lee E, Park J, Choi J, Lee HJ, Seo M, Lee EJ, Yook JI, Haam S, Huh YM, Yoon DS, Suh JS, Yang J.

Biosens Bioelectron. 2014 Jul 15;57:171-8. doi: 10.1016/j.bios.2014.02.011. Epub 2014 Feb 19.

PMID:
24583688

Supplemental Content

Support Center