Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

Multichannel scanning probe microscopy and spectroscopy of graphene moiré structures.

Dedkov Y, Voloshina E.

Phys Chem Chem Phys. 2014 Mar 7;16(9):3894-908. doi: 10.1039/c3cp54541e.

PMID:
24457547
2.

Electronic structure and imaging contrast of graphene moiré on metals.

Voloshina EN, Fertitta E, Garhofer A, Mittendorfer F, Fonin M, Thissen A, Dedkov YS.

Sci Rep. 2013;3:1072. doi: 10.1038/srep01072. Epub 2013 Jan 17.

3.

Tug-of-war between corrugation and binding energy: revealing the formation of multiple moiré patterns on a strongly interacting graphene-metal system.

Martín-Recio A, Romero-Muñiz C, Martínez-Galera AJ, Pou P, Pérez R, Gómez-Rodríguez JM.

Nanoscale. 2015 Jul 14;7(26):11300-9. doi: 10.1039/c5nr00825e.

PMID:
25988393
4.

Multi-oriented moiré superstructures of graphene on Ir(111): experimental observations and theoretical models.

Meng L, Wu R, Zhang L, Li L, Du S, Wang Y, Gao HJ.

J Phys Condens Matter. 2012 Aug 8;24(31):314214. doi: 10.1088/0953-8984/24/31/314214. Epub 2012 Jul 20.

PMID:
22820951
5.

Atomic-Scale Variations of the Mechanical Response of 2D Materials Detected by Noncontact Atomic Force Microscopy.

de la Torre B, Ellner M, Pou P, Nicoara N, Pérez R, Gómez-Rodríguez JM.

Phys Rev Lett. 2016 Jun 17;116(24):245502. doi: 10.1103/PhysRevLett.116.245502. Epub 2016 Jun 16.

PMID:
27367394
6.

Moiré superstructures of graphene on faceted nickel islands.

Murata Y, Petrova V, Kappes BB, Ebnonnasir A, Petrov I, Xie YH, Ciobanu CV, Kodambaka S.

ACS Nano. 2010 Nov 23;4(11):6509-14. doi: 10.1021/nn102446y. Epub 2010 Oct 14.

PMID:
20945924
7.

Symmetry-Driven Band Gap Engineering in Hydrogen Functionalized Graphene.

Jørgensen JH, Čabo AG, Balog R, Kyhl L, Groves MN, Cassidy AM, Bruix A, Bianchi M, Dendzik M, Arman MA, Lammich L, Pascual JI, Knudsen J, Hammer B, Hofmann P, Hornekaer L.

ACS Nano. 2016 Dec 27;10(12):10798-10807. doi: 10.1021/acsnano.6b04671. Epub 2016 Nov 17.

PMID:
28024374
8.

High-resolution noncontact atomic force microscopy.

Pérez R, García R, Schwarz U.

Nanotechnology. 2009 Jul 1;20(26):260201. doi: 10.1088/0957-4484/20/26/260201. Epub 2009 Jun 10.

PMID:
19531843
9.

Kondo effect of cobalt adatoms on a graphene monolayer controlled by substrate-induced ripples.

Ren J, Guo H, Pan J, Zhang YY, Wu X, Luo HG, Du S, Pantelides ST, Gao HJ.

Nano Lett. 2014 Jul 9;14(7):4011-5. doi: 10.1021/nl501425n. Epub 2014 Jun 11.

PMID:
24905855
10.

Scanning probe microscopy investigations of the electrical properties of chemical vapor deposited graphene grown on a 6H-SiC substrate.

Gajewski K, Kopiec D, Moczała M, Piotrowicz A, Zielony M, Wielgoszewski G, Gotszalk T, Strupiński W.

Micron. 2015 Jan;68:17-22. doi: 10.1016/j.micron.2014.08.005. Epub 2014 Aug 20.

PMID:
25203361
11.

Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis.

Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardière G, Ugeda MM, Magaud L, Gómez-Rodríguez JM, Ynduráin F, Veuillen JY.

Phys Rev Lett. 2012 Nov 9;109(19):196802. Epub 2012 Nov 8.

PMID:
23215414
12.

Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.

Chowdhury S, Balasubramanian R.

Adv Colloid Interface Sci. 2014 Feb;204:35-56. doi: 10.1016/j.cis.2013.12.005. Epub 2013 Dec 26.

PMID:
24412086
13.

Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions.

Lazar P, Zhang S, Safářová K, Li Q, Froning JP, Granatier J, Hobza P, Zbořil R, Besenbacher F, Dong M, Otyepka M.

ACS Nano. 2013 Feb 26;7(2):1646-51. doi: 10.1021/nn305608a. Epub 2013 Jan 30.

14.

Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene.

Kim K, DaSilva A, Huang S, Fallahazad B, Larentis S, Taniguchi T, Watanabe K, LeRoy BJ, MacDonald AH, Tutuc E.

Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3364-3369. doi: 10.1073/pnas.1620140114. Epub 2017 Mar 14.

PMID:
28292902
15.

Local tunnel magnetoresistance of an iron intercalated graphene-based heterostructure.

Decker R, Bazarnik M, Atodiresei N, Caciuc V, Blügel S, Wiesendanger R.

J Phys Condens Matter. 2014 Oct 1;26(39):394004. doi: 10.1088/0953-8984/26/39/394004. Epub 2014 Sep 12.

PMID:
25212093
16.

Contrast inversion of the h-BN nanomesh investigated by nc-AFM and Kelvin probe force microscopy.

Koch S, Langer M, Kawai S, Meyer E, Glatzel T.

J Phys Condens Matter. 2012 Aug 8;24(31):314212. doi: 10.1088/0953-8984/24/31/314212. Epub 2012 Jul 20.

PMID:
22820852
17.

Universal classification of twisted, strained and sheared graphene moiré superlattices.

Artaud A, Magaud L, Le Quang T, Guisset V, David P, Chapelier C, Coraux J.

Sci Rep. 2016 May 16;6:25670. doi: 10.1038/srep25670.

18.

Understanding the origin of band gap formation in graphene on metals: graphene on Cu/Ir(111).

Vita H, Böttcher S, Horn K, Voloshina EN, Ovcharenko RE, Kampen T, Thissen A, Dedkov YS.

Sci Rep. 2014 Jul 16;4:5704. doi: 10.1038/srep05704.

19.

On the differing sensitivity to chemical gating of single and double layer epitaxial graphene explored using scanning Kelvin probe microscopy.

Pearce R, Eriksson J, Iakimov T, Hultman L, Lloyd Spetz A, Yakimova R.

ACS Nano. 2013 May 28;7(5):4647-56. doi: 10.1021/nn3052633. Epub 2013 May 17.

PMID:
23631346
20.

Plasmons in graphene moiré superlattices.

Ni GX, Wang H, Wu JS, Fei Z, Goldflam MD, Keilmann F, Özyilmaz B, Castro Neto AH, Xie XM, Fogler MM, Basov DN.

Nat Mater. 2015 Dec;14(12):1217-22. doi: 10.1038/nmat4425. Epub 2015 Sep 28.

PMID:
26413987

Supplemental Content

Support Center