Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Development and validation of an improved neurological hemifield test to identify chiasmal and postchiasmal lesions by automated perimetry.

McCoy AN, Quigley HA, Wang J, Miller NR, Subramanian PS, Ramulu PY, Boland MV.

Invest Ophthalmol Vis Sci. 2014 Feb 20;55(2):1017-23. doi: 10.1167/iovs.13-13702.

2.

Evaluation of an algorithm for detecting visual field defects due to chiasmal and postchiasmal lesions: the neurological hemifield test.

Boland MV, McCoy AN, Quigley HA, Miller NR, Subramanian PS, Ramulu PY, Murakami P, Danesh-Meyer HV.

Invest Ophthalmol Vis Sci. 2011 Oct 10;52(11):7959-65. doi: 10.1167/iovs.11-7868.

3.

Diagnostic ability of retinal nerve fiber layer thickness measurements and neurologic hemifield test to detect chiasmal compression.

Moon CH, Lee SH, Kim BT, Hwang SC, Ohn YH, Park TK.

Invest Ophthalmol Vis Sci. 2012 Aug 9;53(9):5410-5. doi: 10.1167/iovs.12-9905.

PMID:
22815352
4.

Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study.

Sample PA, Medeiros FA, Racette L, Pascual JP, Boden C, Zangwill LM, Bowd C, Weinreb RN.

Invest Ophthalmol Vis Sci. 2006 Aug;47(8):3381-9.

PMID:
16877406
5.

Neurological Hemifield Test in Binasal Defects.

Rebolleda G, Díez-Álvarez L, Arrondo E, Ley L, Martínez-San Millán J, Muñoz-Negrete FJ.

Invest Ophthalmol Vis Sci. 2015 Apr;56(4):2568-9. doi: 10.1167/iovs.15-16656. No abstract available.

PMID:
26066601
6.

Author Response: Neurological Hemifield Test in Binasal Defects.

McCoy AN, Quigley HA, Miller NR, Subramanian PS, Ramulu PY, Boland MV.

Invest Ophthalmol Vis Sci. 2015 Apr;56(4):2570. doi: 10.1167/iovs.15-16824. No abstract available.

PMID:
26066602
7.

Loss of stereopsis with optic chiasmal lesions and stereoscopic tests as a differential test.

Hirai T, Ito Y, Arai M, Ota Y, Kojima T, Sato M, Miyake Y.

Ophthalmology. 2002 Sep;109(9):1692-702.

PMID:
12208719
8.

Assessing visual field clustering schemes using machine learning classifiers in standard perimetry.

Boden C, Chan K, Sample PA, Hao J, Lee TW, Zangwill LM, Weinreb RN, Goldbaum MH.

Invest Ophthalmol Vis Sci. 2007 Dec;48(12):5582-90.

9.

Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma.

Liu S, Lam S, Weinreb RN, Ye C, Cheung CY, Lai G, Lam DS, Leung CK.

Invest Ophthalmol Vis Sci. 2011 Sep 21;52(10):7325-31. doi: 10.1167/iovs.11-7795.

PMID:
21810975
10.

Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects.

Kook MS, Cho HS, Seong M, Choi J.

Ophthalmology. 2005 Nov;112(11):1970-8. Epub 2005 Sep 26.

PMID:
16185765
11.

Suprathreshold static perimetry in glaucoma and other optic nerve disease.

Johnson CA, Keltner JL, Balestrery FG.

Ophthalmology. 1979 Jul;86(7):1278-86.

PMID:
233860
12.
13.

A new index to monitor central visual field progression in glaucoma.

de Moraes CG, Furlanetto RL, Ritch R, Liebmann JM.

Ophthalmology. 2014 Aug;121(8):1531-8. doi: 10.1016/j.ophtha.2014.02.007. Epub 2014 Apr 13.

PMID:
24726202
14.

Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma.

Sample PA, Bosworth CF, Blumenthal EZ, Girkin C, Weinreb RN.

Invest Ophthalmol Vis Sci. 2000 Jun;41(7):1783-90.

PMID:
10845599
15.

Role of visual field reliability indices in ruling out glaucoma.

Rao HL, Yadav RK, Begum VU, Addepalli UK, Choudhari NS, Senthil S, Garudadri CS.

JAMA Ophthalmol. 2015 Jan;133(1):40-4. doi: 10.1001/jamaophthalmol.2014.3609.

PMID:
25256758
16.

Pattern electroretinograms for the detection of neural loss in patients with permanent temporal visual field defect from chiasmal compression.

Cunha LP, Oyamada MK, Monteiro ML.

Doc Ophthalmol. 2008 Nov;117(3):223-32. doi: 10.1007/s10633-008-9126-9. Epub 2008 Apr 10.

PMID:
18401605
17.

Combining functional and structural tests improves the diagnostic accuracy of relevance vector machine classifiers.

Racette L, Chiou CY, Hao J, Bowd C, Goldbaum MH, Zangwill LM, Lee TW, Weinreb RN, Sample PA.

J Glaucoma. 2010 Mar;19(3):167-75. doi: 10.1097/IJG.0b013e3181a98b85.

18.

Visual function-specific perimetry to identify glaucomatous visual loss using three different definitions of visual field abnormality.

Tafreshi A, Sample PA, Liebmann JM, Girkin CA, Zangwill LM, Weinreb RN, Lalezary M, Racette L.

Invest Ophthalmol Vis Sci. 2009 Mar;50(3):1234-40. doi: 10.1167/iovs.08-2535. Epub 2008 Oct 31.

19.

Performance of the Moorfields motion displacement test for identifying eyes with glaucoma.

Ong EL, Zheng Y, Aung T, Tan L, Cheng CY, Wong TY, How A.

Ophthalmology. 2014 Jan;121(1):88-92. doi: 10.1016/j.ophtha.2013.08.036. Epub 2013 Oct 16.

PMID:
24139154
20.

Sector-based analysis with the Heidelberg Retinal Tomograph 3 across disc sizes and glaucoma stages: a multicenter study.

Oddone F, Centofanti M, Iester M, Rossetti L, Fogagnolo P, Michelessi M, Capris E, Manni G.

Ophthalmology. 2009 Jun;116(6):1106-11.e1-3. doi: 10.1016/j.ophtha.2009.01.020. Epub 2009 Apr 19.

PMID:
19376590

Supplemental Content

Support Center