Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

In situ optical and structural studies on photoluminesence quenching in CdSe/CdS/Au heterostructures.

Demortière A, Schaller RD, Li T, Chattopadhyay S, Krylova G, Shibata T, dos Santos Claro PC, Rowland CE, Miller JT, Cook R, Lee B, Shevchenko EV.

J Am Chem Soc. 2014 Feb 12;136(6):2342-50. doi: 10.1021/ja4092616. Epub 2014 Feb 3.

PMID:
24443818
2.

Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.

Wu K, Zhu H, Lian T.

Acc Chem Res. 2015 Mar 17;48(3):851-9. doi: 10.1021/ar500398g. Epub 2015 Feb 16.

PMID:
25682713
3.

Hole removal rate limits photodriven H2 generation efficiency in CdS-Pt and CdSe/CdS-Pt semiconductor nanorod-metal tip heterostructures.

Wu K, Chen Z, Lv H, Zhu H, Hill CL, Lian T.

J Am Chem Soc. 2014 May 28;136(21):7708-16. doi: 10.1021/ja5023893. Epub 2014 May 14.

PMID:
24798693
4.

Hot-electron transfer from the semiconductor domain to the metal domain in CdSe@CdS{Au} nano-heterostructures.

Dana J, Maity P, Ghosh HN.

Nanoscale. 2017 Jul 13;9(27):9723-9731. doi: 10.1039/c7nr02232h.

PMID:
28675235
5.

Hybrid colloidal Au-CdSe pentapod heterostructures synthesis and their photocatalytic properties.

Haldar KK, Sinha G, Lahtinen J, Patra A.

ACS Appl Mater Interfaces. 2012 Nov;4(11):6266-72. doi: 10.1021/am301859b. Epub 2012 Nov 6.

PMID:
23113704
6.

Ultrafast dynamics and single particle spectroscopy of Au-CdSe nanorods.

Sagarzazu G, Inoue K, Saruyama M, Sakamoto M, Teranishi T, Masuo S, Tamai N.

Phys Chem Chem Phys. 2013 Feb 14;15(6):2141-52. doi: 10.1039/c2cp43458j. Epub 2013 Jan 4.

PMID:
23288247
7.

Beyond band alignment: hole localization driven formation of three spatially separated long-lived exciton states in CdSe/CdS nanorods.

Wu K, Rodríguez-Córdoba WE, Liu Z, Zhu H, Lian T.

ACS Nano. 2013 Aug 27;7(8):7173-85. doi: 10.1021/nn402597p. Epub 2013 Jul 15.

PMID:
23829512
8.

Preparation and spectroscopic investigation of CdS/CdSe/CdS quantum-dot quantum-well heterostructures.

Ba HL, Xuan NN, Thu NP, Duc CV, Thuy LP, Thu TN.

J Nanosci Nanotechnol. 2009 Feb;9(2):679-83.

PMID:
19441370
9.

Nature and decay pathways of photoexcited states in CdSe and CdSe/CdS nanoplatelets.

Kunneman LT, Schins JM, Pedetti S, Heuclin H, Grozema FC, Houtepen AJ, Dubertret B, Siebbeles LD.

Nano Lett. 2014 Dec 10;14(12):7039-45. doi: 10.1021/nl503406a. Epub 2014 Nov 10.

PMID:
25366327
10.

CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes.

Deka S, Quarta A, Lupo MG, Falqui A, Boninelli S, Giannini C, Morello G, De Giorgi M, Lanzani G, Spinella C, Cingolani R, Pellegrino T, Manna L.

J Am Chem Soc. 2009 Mar 4;131(8):2948-58. doi: 10.1021/ja808369e.

PMID:
19206236
11.

Absorption properties of metal-semiconductor hybrid nanoparticles.

Shaviv E, Schubert O, Alves-Santos M, Goldoni G, Di Felice R, Vallée F, Del Fatti N, Banin U, Sönnichsen C.

ACS Nano. 2011 Jun 28;5(6):4712-9. doi: 10.1021/nn200645h. Epub 2011 Jun 7.

PMID:
21648441
12.

The preparation of anisotropic hybrid nanostructures based on CdSe and CdS by the ligand combination method.

Song X, Vladislav K, Liu C, Xu W.

Nanoscale. 2017 Mar 17;9(11):3934-3940. doi: 10.1039/c7nr00527j.

PMID:
28265638
13.

Photochemical Oxidative Growth of Iridium Oxide Nanoparticles on CdSe@CdS Nanorods.

Kalisman P, Nakibli Y, Amirav L.

J Vis Exp. 2016 Feb 11;(108):e53675. doi: 10.3791/53675.

PMID:
26891234
14.

Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films.

Hosoki K, Tayagaki T, Yamamoto S, Matsuda K, Kanemitsu Y.

Phys Rev Lett. 2008 May 23;100(20):207404. Epub 2008 May 23.

PMID:
18518579
15.

Light-induced selective deposition of metals on gold-tipped CdSe-seeded CdS nanorods.

Li X, Lian J, Lin M, Chan Y.

J Am Chem Soc. 2011 Feb 2;133(4):672-5. doi: 10.1021/ja1076603.

PMID:
21174430
16.

Relationships between Exciton Dissociation and Slow Recombination within ZnSe/CdS and CdSe/CdS Dot-in-Rod Heterostructures.

Grennell AN, Utterback JK, Pearce OM, Wilker MB, Dukovic G.

Nano Lett. 2017 Jun 14;17(6):3764-3774. doi: 10.1021/acs.nanolett.7b01101. Epub 2017 Jun 1.

PMID:
28534406
17.

High-temperature photoluminescence of CdSe/CdS core/shell nanoheterostructures.

Diroll BT, Murray CB.

ACS Nano. 2014 Jun 24;8(6):6466-74. doi: 10.1021/nn5021314. Epub 2014 May 15.

PMID:
24824459
18.

Metal-Semiconductor Hybrid Aerogels: Evolution of Optoelectronic Properties in a Low-Dimensional CdSe/Ag Nanoparticle Assembly.

Nahar L, Esteves RJ, Hafiz S, Özgür Ü, Arachchige IU.

ACS Nano. 2015 Oct 27;9(10):9810-21. doi: 10.1021/acsnano.5b02777. Epub 2015 Sep 25.

PMID:
26389642
19.

Mapping the optical properties of CdSe/CdS heterostructure nanocrystals: the effects of core size and shell thickness.

van Embden J, Jasieniak J, Mulvaney P.

J Am Chem Soc. 2009 Oct 14;131(40):14299-309. doi: 10.1021/ja9030209.

PMID:
19754114
20.

The quenching of CdSe quantum dots photoluminescence by gold nanoparticles in solution.

Nikoobakht B, Burda C, Braun M, Hun M, El-Sayed MA.

Photochem Photobiol. 2002 Jun;75(6):591-7.

PMID:
12081320

Supplemental Content

Support Center