Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Structure of the DNA-binding and RNA-polymerase-binding region of transcription antitermination factor λQ.

Vorobiev SM, Gensler Y, Vahedian-Movahed H, Seetharaman J, Su M, Huang JY, Xiao R, Kornhaber G, Montelione GT, Tong L, Ebright RH, Nickels BE.

Structure. 2014 Mar 4;22(3):488-95. doi: 10.1016/j.str.2013.12.010. Epub 2014 Jan 16.

2.

The bacteriophage lambda Q antiterminator protein contacts the beta-flap domain of RNA polymerase.

Deighan P, Diez CM, Leibman M, Hochschild A, Nickels BE.

Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15305-10. doi: 10.1073/pnas.0805757105. Epub 2008 Oct 1.

4.

The sigma(70) subunit of RNA polymerase is contacted by the (lambda)Q antiterminator during early elongation.

Nickels BE, Roberts CW, Sun H, Roberts JW, Hochschild A.

Mol Cell. 2002 Sep;10(3):611-22.

5.

Crystal structure of the bacteriophage T4 late-transcription coactivator gp33 with the β-subunit flap domain of Escherichia coli RNA polymerase.

Twist KA, Campbell EA, Deighan P, Nechaev S, Jain V, Geiduschek EP, Hochschild A, Darst SA.

Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):19961-6. doi: 10.1073/pnas.1113328108. Epub 2011 Dec 1.

6.
7.
8.

Architecture of the bacteriophage T4 activator MotA/promoter DNA interaction during sigma appropriation.

Hsieh ML, James TD, Knipling L, Waddell MB, White S, Hinton DM.

J Biol Chem. 2013 Sep 20;288(38):27607-18. doi: 10.1074/jbc.M113.475434. Epub 2013 Jul 31.

9.

Regulation of promoter-proximal transcription elongation: enhanced DNA scrunching drives λQ antiterminator-dependent escape from a σ70-dependent pause.

Strobel EJ, Roberts JW.

Nucleic Acids Res. 2014 Apr;42(8):5097-108. doi: 10.1093/nar/gku147. Epub 2014 Feb 17.

10.

The structure of a transcribing T7 RNA polymerase in transition from initiation to elongation.

Durniak KJ, Bailey S, Steitz TA.

Science. 2008 Oct 24;322(5901):553-7. doi: 10.1126/science.1163433.

11.

Snapshots of a viral RNA polymerase switching gears from transcription initiation to elongation.

Theis K.

Virol Sin. 2013 Dec;28(6):337-44. doi: 10.1007/s12250-013-3397-3. Epub 2013 Dec 2. Review.

PMID:
24306760
13.

Mapping the molecular interface between the sigma(70) subunit of E. coli RNA polymerase and T4 AsiA.

Minakhin L, Camarero JA, Holford M, Parker C, Muir TW, Severinov K.

J Mol Biol. 2001 Mar 2;306(4):631-42.

PMID:
11243776
14.

Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase.

Yin YW, Steitz TA.

Science. 2002 Nov 15;298(5597):1387-95. Epub 2002 Sep 19.

15.

Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution.

Tahirov TH, Temiakov D, Anikin M, Patlan V, McAllister WT, Vassylyev DG, Yokoyama S.

Nature. 2002 Nov 7;420(6911):43-50. Epub 2002 Oct 9.

PMID:
12422209
16.
17.

Functional architecture of T7 RNA polymerase transcription complexes.

Nayak D, Guo Q, Sousa R.

J Mol Biol. 2007 Aug 10;371(2):490-500. Epub 2007 May 31.

18.

Structural basis for promoter specificity switching of RNA polymerase by a phage factor.

Tagami S, Sekine S, Minakhin L, Esyunina D, Akasaka R, Shirouzu M, Kulbachinskiy A, Severinov K, Yokoyama S.

Genes Dev. 2014 Mar 1;28(5):521-31. doi: 10.1101/gad.233916.113.

19.

Bacteriophage T4 MotA activator and the β-flap tip of RNA polymerase target the same set of σ70 carboxyl-terminal residues.

Bonocora RP, Decker PK, Glass S, Knipling L, Hinton DM.

J Biol Chem. 2011 Nov 11;286(45):39290-6. doi: 10.1074/jbc.M111.278762. Epub 2011 Sep 12.

20.

Restructuring of an RNA polymerase holoenzyme elongation complex by lambdoid phage Q proteins.

Marr MT, Datwyler SA, Meares CF, Roberts JW.

Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):8972-8.

Supplemental Content

Support Center