Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Long-wavelength room-temperature luminescence from InAs/GaAs quantum dots with an optimized GaAsSbN capping layer.

Utrilla AD, Ulloa JM, Guzman A, Hierro A.

Nanoscale Res Lett. 2014 Jan 17;9(1):36. doi: 10.1186/1556-276X-9-36.

2.

Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots.

Reyes DF, González D, Ulloa JM, Sales DL, Dominguez L, Mayoral A, Hierro A.

Nanoscale Res Lett. 2012 Nov 27;7(1):653. doi: 10.1186/1556-276X-7-653.

3.

Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm.

Liu WS, Tseng HL, Kuo PC.

Opt Express. 2014 Aug 11;22(16):18860-9. doi: 10.1364/OE.22.018860.

PMID:
25320972
4.

Band alignment tailoring of InAs1-xSbx/GaAs quantum dots: control of type I to type II transition.

He J, Reyner CJ, Liang BL, Nunna K, Huffaker DL, Pavarelli N, Gradkowski K, Ochalski TJ, Huyet G, Dorogan VG, Mazur YI, Salamo GJ.

Nano Lett. 2010 Aug 11;10(8):3052-6. doi: 10.1021/nl102237n.

PMID:
20698619
5.

Ground state lasing at 1.30 microm from InAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition.

Guimard D, Ishida M, Bordel D, Li L, Nishioka M, Tanaka Y, Ekawa M, Sudo H, Yamamoto T, Kondo H, Sugawara M, Arakawa Y.

Nanotechnology. 2010 Mar 12;21(10):105604. doi: 10.1088/0957-4484/21/10/105604. Epub 2010 Feb 16.

PMID:
20160334
6.

InAs quantum dots capped by GaAs, In0.4Ga0.6As dots, and In0.2Ga0.8As well.

Fu Y, Wang SM, Ferdos F, Sadeghi M, Larsson A.

J Nanosci Nanotechnol. 2002 Jun-Aug;2(3-4):421-6.

PMID:
12908273
7.

Tunable Emission Wavelength Stacked InAs/GaAs Quantum Dots by Chemical Beam Epitaxy for Optical Coherence Tomography.

Ilahi B, Zribi J, Guillotte M, Arès R, Aimez V, Morris D.

Materials (Basel). 2016 Jun 24;9(7). pii: E511. doi: 10.3390/ma9070511.

8.

Suppression of dislocations by Sb spray in the vicinity of InAs/GaAs quantum dots.

Dai L, Bremner SP, Tan S, Wang S, Zhang G, Liu Z.

Nanoscale Res Lett. 2014 May 30;9(1):278. doi: 10.1186/1556-276X-9-278. eCollection 2014.

9.

Molecular beam epitaxy growth methods of wavelength control for InAs/(In)GaAsN/GaAs heterostructures.

Mamutin VV, Egorov AY, Kryzhanovskaya NV.

Nanotechnology. 2008 Nov 5;19(44):445715. doi: 10.1088/0957-4484/19/44/445715. Epub 2008 Oct 2.

PMID:
21832756
10.

Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots.

Wang P, Pan W, Wu X, Liu J, Cao C, Wang S, Gong Q.

Nanoscale Res Lett. 2016 Dec;11(1):280. doi: 10.1186/s11671-016-1470-1. Epub 2016 Jun 2.

11.

Effects of temperature on transition energies of GaAsSbN/GaAs single quantum wells.

Lourenço SA, da Silva MA, Dias IF, Duarte JL, Harmand JC.

J Phys Condens Matter. 2011 Aug 17;23(32):325801. doi: 10.1088/0953-8984/23/32/325801. Epub 2011 Jul 25.

PMID:
21785181
12.

Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.

Su XB, Ding Y, Ma B, Zhang KL, Chen ZS, Li JL, Cui XR, Xu YQ, Ni HQ, Niu ZC.

Nanoscale Res Lett. 2018 Feb 21;13(1):59. doi: 10.1186/s11671-018-2472-y.

13.

Raman scattering study on Sb spray InAs/GaAs quantum dot nanostructure systems.

Dai L, Bremner SP, Tan S, Wang S, Zhang G, Liu Z.

Nanoscale Res Lett. 2015 Apr 29;10:202. doi: 10.1186/s11671-015-0908-1. eCollection 2015.

14.

Observation and tunability of room temperature photoluminescence of GaAs/GaInAs core-multiple-quantum-well shell nanowire structure grown on Si (100) by molecular beam epitaxy.

Park KW, Park CY, Ravindran S, Jang JS, Jo YR, Kim BJ, Lee YT.

Nanoscale Res Lett. 2014 Nov 22;9(1):626. doi: 10.1186/1556-276X-9-626. eCollection 2014.

15.

Shape and size control of InAs/InP (113)B quantum dots by Sb deposition during the capping procedure.

Lu W, Bozkurt M, Keizer JG, Rohel T, Folliot H, Bertru N, Koenraad PM.

Nanotechnology. 2011 Feb 4;22(5):055703. doi: 10.1088/0957-4484/22/5/055703. Epub 2010 Dec 22.

PMID:
21178229
16.

InAs/GaInAs(N) quantum dots on GaAs substrate for single photon emitters above 1300 nm.

Strauss M, Höfling S, Forchel A.

Nanotechnology. 2009 Dec 16;20(50):505601. doi: 10.1088/0957-4484/20/50/505601. Epub 2009 Nov 12.

PMID:
19907066
17.

Low density InAs/(In)GaAs quantum dots emitting at long wavelengths.

Trevisi G, Seravalli L, Frigeri P, Franchi S.

Nanotechnology. 2009 Oct 14;20(41):415607. doi: 10.1088/0957-4484/20/41/415607. Epub 2009 Sep 18.

PMID:
19762951
18.

InAs/GaAs nanostructures grown on patterned Si(001) by molecular beam epitaxy.

He J, Yadavalli K, Zhao Z, Li N, Hao Z, Wang KL, Jacob AP.

Nanotechnology. 2008 Nov 12;19(45):455607. doi: 10.1088/0957-4484/19/45/455607. Epub 2008 Oct 9.

PMID:
21832784
19.

Detecting Spatially Localized Exciton in Self-Organized InAs/InGaAs Quantum Dot Superlattices: a Way to Improve the Photovoltaic Efficiency.

Ezzedini M, Hidouri T, Alouane MHH, Sayari A, Shalaan E, Chauvin N, Sfaxi L, Saidi F, Al-Ghamdi A, Bru-Chevallier C, Maaref H.

Nanoscale Res Lett. 2017 Dec;12(1):450. doi: 10.1186/s11671-017-2218-2. Epub 2017 Jul 11.

20.

Self-assembled InAs/GaAs quantum dots covered by different strain reducing layers exhibiting strong photo- and electroluminescence in 1.3 and 1.55 microm bands.

Hazdra P, Oswald J, Komarnitskyy V, Kuldová K, Hospodková A, Hulicius E, Pangrác J.

J Nanosci Nanotechnol. 2011 Aug;11(8):6804-9.

PMID:
22103083

Supplemental Content

Support Center