Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 366

1.

Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.

Zhao Z, Liu H, Wang C, Xu JR.

BMC Genomics. 2014 Jan 3;15:6. doi: 10.1186/1471-2164-15-6.

2.

Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.

Zhao Z, Liu H, Wang C, Xu JR.

BMC Genomics. 2013 Apr 23;14:274. doi: 10.1186/1471-2164-14-274. Corrected and republished in: BMC Genomics. 2014;15:6.

4.

Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates.

Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM.

Microb Cell Fact. 2012 Oct 4;11:134. doi: 10.1186/1475-2859-11-134.

5.

Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level.

Battaglia E, Benoit I, van den Brink J, Wiebenga A, Coutinho PM, Henrissat B, de Vries RP.

BMC Genomics. 2011 Jan 17;12:38. doi: 10.1186/1471-2164-12-38.

6.

Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.

Ferreira Filho JA, Horta MAC, Beloti LL, Dos Santos CA, de Souza AP.

BMC Genomics. 2017 Oct 12;18(1):779. doi: 10.1186/s12864-017-4181-9.

7.

Genome wide comprehensive analysis and web resource development on cell wall degrading enzymes from phyto-parasitic nematodes.

Rai KM, Balasubramanian VK, Welker CM, Pang M, Hii MM, Mendu V.

BMC Plant Biol. 2015 Aug 1;15:187. doi: 10.1186/s12870-015-0576-4.

8.

Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases.

Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS.

Plant Sci. 2015 May;234:180-93. doi: 10.1016/j.plantsci.2015.02.010. Epub 2015 Feb 25. Review.

9.

Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome.

Blackman LM, Cullerne DP, Hardham AR.

BMC Genomics. 2014 Sep 11;15:785. doi: 10.1186/1471-2164-15-785.

10.

Saprophytic and pathogenic fungi in the Ceratocystidaceae differ in their ability to metabolize plant-derived sucrose.

Van der Nest MA, Steenkamp ET, McTaggart AR, Trollip C, Godlonton T, Sauerman E, Roodt D, Naidoo K, Coetzee MP, Wilken PM, Wingfield MJ, Wingfield BD.

BMC Evol Biol. 2015 Dec 7;15:273. doi: 10.1186/s12862-015-0550-7.

12.

Trypsin-like proteins of the fungi as possible markers of pathogenicity.

Dubovenko AG, Dunaevsky YE, Belozersky MA, Oppert B, Lord JC, Elpidina EN.

Fungal Biol. 2010 Feb-Mar;114(2-3):151-9.

PMID:
20960971
13.

Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanses and polygalacturonases of Fusarium virguliforme.

Chang HX, Yendrek CR, Caetano-Anolles G, Hartman GL.

BMC Microbiol. 2016 Jul 12;16(1):147. doi: 10.1186/s12866-016-0761-0. Erratum in: BMC Microbiol. 2017 May 10;17 (1):110.

14.

Fungal plant cell wall-degrading enzyme database: a platform for comparative and evolutionary genomics in fungi and Oomycetes.

Choi J, Kim KT, Jeon J, Lee YH.

BMC Genomics. 2013;14 Suppl 5:S7. doi: 10.1186/1471-2164-14-S5-S7. Epub 2013 Oct 16.

15.

Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay.

Hori C, Gaskell J, Igarashi K, Samejima M, Hibbett D, Henrissat B, Cullen D.

Mycologia. 2013 Nov-Dec;105(6):1412-27. doi: 10.3852/13-072. Epub 2013 Aug 9.

PMID:
23935027
16.

Carbohydrate-active enzymes revealed in Coptotermes formosanus (Isoptera: Rhinotermitidae) transcriptome.

Zhang D, Lax AR, Henrissat B, Coutinho P, Katiya N, Nierman WC, Fedorova N.

Insect Mol Biol. 2012 Apr;21(2):235-45. doi: 10.1111/j.1365-2583.2011.01130.x. Epub 2012 Jan 16.

PMID:
22243654
17.

Comparative genomics to explore phylogenetic relationship, cryptic sexual potential and host specificity of Rhynchosporium species on grasses.

Penselin D, Münsterkötter M, Kirsten S, Felder M, Taudien S, Platzer M, Ashelford K, Paskiewicz KH, Harrison RJ, Hughes DJ, Wolf T, Shelest E, Graap J, Hoffmann J, Wenzel C, Wöltje N, King KM, Fitt BD, Güldener U, Avrova A, Knogge W.

BMC Genomics. 2016 Nov 22;17(1):953.

18.
19.

Evolutionary analysis of glycosyl hydrolase family 28 (GH28) suggests lineage-specific expansions in necrotrophic fungal pathogens.

Sprockett DD, Piontkivska H, Blackwood CB.

Gene. 2011 Jun 15;479(1-2):29-36. doi: 10.1016/j.gene.2011.02.009. Epub 2011 Feb 25.

PMID:
21354463
20.

Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

Busk PK, Lange M, Pilgaard B, Lange L.

PLoS One. 2014 Dec 2;9(12):e114138. doi: 10.1371/journal.pone.0114138. eCollection 2014.

Supplemental Content

Support Center