Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 84

1.

Easy come easy go: surfaces containing immobilized nanoparticles or isolated polycation chains facilitate removal of captured Staphylococcus aureus by retarding bacterial bond maturation.

Fang B, Jiang Y, Rotello VM, Nüsslein K, Santore MM.

ACS Nano. 2014 Feb 25;8(2):1180-90. doi: 10.1021/nn405845y. Epub 2014 Jan 14.

PMID:
24422487
2.

Bacterial adhesion on hybrid cationic nanoparticle-polymer brush surfaces: ionic strength tunes capture from monovalent to multivalent binding.

Fang B, Gon S, Park M, Kumar KN, Rotello VM, Nusslein K, Santore MM.

Colloids Surf B Biointerfaces. 2011 Oct 1;87(1):109-15. doi: 10.1016/j.colsurfb.2011.05.010. Epub 2011 May 10.

PMID:
21640564
3.

Antimicrobial surfaces containing cationic nanoparticles: how immobilized, clustered, and protruding cationic charge presentation affects killing activity and kinetics.

Fang B, Jiang Y, Nüsslein K, Rotello VM, Santore MM.

Colloids Surf B Biointerfaces. 2015 Jan 1;125:255-63. doi: 10.1016/j.colsurfb.2014.10.043. Epub 2014 Oct 31.

PMID:
25480668
4.

Using flow to switch the valency of bacterial capture on engineered surfaces containing immobilized nanoparticles.

Fang B, Gon S, Park MH, Kumar KN, Rotello VM, Nüsslein K, Santore MM.

Langmuir. 2012 May 22;28(20):7803-10. doi: 10.1021/la205080y. Epub 2012 May 7.

PMID:
22563906
5.

Surfaces for competitive selective bacterial capture from protein solutions.

Fang B, Gon S, Nüsslein K, Santore MM.

ACS Appl Mater Interfaces. 2015 May 20;7(19):10275-82. doi: 10.1021/acsami.5b00864. Epub 2015 May 8.

PMID:
25955769
6.

The role of nano-scale heterogeneous electrostatic interactions in initial bacterial adhesion from flow: a case study with Staphylococcus aureus.

Kalasin S, Dabkowski J, Nüsslein K, Santore MM.

Colloids Surf B Biointerfaces. 2010 Apr 1;76(2):489-95. doi: 10.1016/j.colsurfb.2009.12.009. Epub 2009 Dec 22.

PMID:
20074917
7.

Adhesion of eukaryotic cells and Staphylococcus aureus to silicon model surfaces.

Müller R, Ruhl S, Hiller KA, Schmalz G, Schweikl H.

J Biomed Mater Res A. 2008 Mar 1;84(3):817-27.

PMID:
17635034
8.

Antimicrobial surfaces using covalently bound polyallylamine.

Iarikov DD, Kargar M, Sahari A, Russel L, Gause KT, Behkam B, Ducker WA.

Biomacromolecules. 2014 Jan 13;15(1):169-76. doi: 10.1021/bm401440h. Epub 2013 Dec 16.

PMID:
24328284
9.

How Bacteria Adhere to Brushy PEG Surfaces: Clinging to Flaws and Compressing the Brush.

Gon S, Kumar KN, Nüsslein K, Santore MM.

Macromolecules. 2012 Oct 23;45(20):8373-8381. Epub 2012 Oct 5.

10.

Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces.

Maddikeri RR, Tosatti S, Schuler M, Chessari S, Textor M, Richards RG, Harris LG.

J Biomed Mater Res A. 2008 Feb;84(2):425-35.

PMID:
17618480
11.

Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness.

Mitik-Dineva N, Wang J, Truong VK, Stoddart P, Malherbe F, Crawford RJ, Ivanova EP.

Curr Microbiol. 2009 Mar;58(3):268-73. doi: 10.1007/s00284-008-9320-8. Epub 2008 Nov 20.

PMID:
19020934
12.

Study of Staphylococcus aureus adhesion on a novel nanostructured surface by chemiluminometry.

Campoccia D, Montanaro L, Agheli H, Sutherland DS, Pirini V, Donati ME, Arciola CR.

Int J Artif Organs. 2006 Jun;29(6):622-9.

PMID:
16841292
13.

Viscous nature of the bond between adhering bacteria and substratum surfaces probed by atomic force microscopy.

Chen Y, van der Mei HC, Busscher HJ, Norde W.

Langmuir. 2014 Mar 25;30(11):3165-9. doi: 10.1021/la404874x. Epub 2014 Mar 14.

PMID:
24588204
14.

Adhesion of bacteria from mixed cell suspension to solid surfaces.

McEldowney S, Fletcher M.

Arch Microbiol. 1987 Jun;148(1):57-62.

PMID:
3115220
15.

Synthesis, characterization and in vitro activity of a surface-attached antimicrobial cationic peptide.

Chen R, Cole N, Willcox MD, Park J, Rasul R, Carter E, Kumar N.

Biofouling. 2009;25(6):517-24. doi: 10.1080/08927010902954207.

PMID:
19408136
16.

Characterization of chemoselective surface attachment of the cationic peptide melimine and its effects on antimicrobial activity.

Chen R, Willcox MD, Cole N, Ho KK, Rasul R, Denman JA, Kumar N.

Acta Biomater. 2012 Dec;8(12):4371-9. doi: 10.1016/j.actbio.2012.07.029. Epub 2012 Jul 27.

PMID:
22842034
17.

Influence of thrombus components in mediating Staphylococcus aureus adhesion to polyurethane surfaces.

Baumgartner JN, Cooper SL.

J Biomed Mater Res. 1998 Jun 15;40(4):660-70.

PMID:
9599043
18.

Staphylococcus aureus adhesion to standard micro-rough and electropolished implant materials.

Harris LG, Meredith DO, Eschbach L, Richards RG.

J Mater Sci Mater Med. 2007 Jun;18(6):1151-6. Epub 2007 Feb 1.

PMID:
17268867
19.

Bacteria-surface interaction in the presence of proteins and surface attached poly(ethylene glycol) methacrylate chains.

Tedjo C, Neoh KG, Kang ET, Fang N, Chan V.

J Biomed Mater Res A. 2007 Aug;82(2):479-91.

PMID:
17295255
20.

Exchange of adsorbed serum proteins during adhesion of Staphylococcus aureus to an abiotic surface and Candida albicans hyphae--an AFM study.

Ovchinnikova ES, van der Mei HC, Krom BP, Busscher HJ.

Colloids Surf B Biointerfaces. 2013 Oct 1;110:45-50. doi: 10.1016/j.colsurfb.2013.04.015. Epub 2013 Apr 23.

PMID:
23707849

Supplemental Content

Support Center