Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Mechanisms of osteoclast-dependent bone formation.

Teti A.

Bonekey Rep. 2013 Dec 4;2:449. doi: 10.1038/bonekey.2013.183.

2.

A supra-cellular model for coupling of bone resorption to formation during remodeling: lessons from two bone resorption inhibitors affecting bone formation differently.

Jensen PR, Andersen TL, Pennypacker BL, Duong LT, Engelholm LH, Delaissé JM.

Biochem Biophys Res Commun. 2014 Jan 10;443(2):694-9. doi: 10.1016/j.bbrc.2013.12.036.

3.

Reprint of: The Great Beauty of the osteoclast.

Cappariello A, Maurizi A, Veeriah V, Teti A.

Arch Biochem Biophys. 2014 Nov 1;561:13-21. doi: 10.1016/j.abb.2014.08.009. Review.

PMID:
25282390
4.

The Great Beauty of the osteoclast.

Cappariello A, Maurizi A, Veeriah V, Teti A.

Arch Biochem Biophys. 2014 Sep 15;558:70-8. doi: 10.1016/j.abb.2014.06.017. Review.

PMID:
24976175
5.

Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity.

Martin TJ, Ng KW.

J Cell Biochem. 1994 Nov;56(3):357-66. Review.

PMID:
7876329
6.
7.

New concepts in bone remodeling: an expanding role for the osteoblast.

Kahn AJ, Partridge NC.

Am J Otolaryngol. 1987 Sep-Oct;8(5):258-64. Review.

PMID:
3324780
8.

Osteoblast-like cells complete osteoclastic bone resorption and form new mineralized bone matrix in vitro.

Mulari MT, Qu Q, Härkönen PL, Väänänen HK.

Calcif Tissue Int. 2004 Sep;75(3):253-61.

PMID:
15148559
9.

Osteoblast and osteoclast crosstalks: from OAF to Ephrin.

Tamma R, Zallone A.

Inflamm Allergy Drug Targets. 2012 Jun;11(3):196-200. Review.

PMID:
22280242
10.

Implications of osteoblast-osteoclast interactions in the management of osteoporosis by antiresorptive agents denosumab and odanacatib.

Sims NA, Ng KW.

Curr Osteoporos Rep. 2014 Mar;12(1):98-106. doi: 10.1007/s11914-014-0196-1. Review.

PMID:
24477416
11.

The Multifaceted Osteoclast; Far and Beyond Bone Resorption.

Drissi H, Sanjay A.

J Cell Biochem. 2016 Aug;117(8):1753-6. doi: 10.1002/jcb.25560.

PMID:
27019318
12.

Osteoclast-derived activity in the coupling of bone formation to resorption.

Martin TJ, Sims NA.

Trends Mol Med. 2005 Feb;11(2):76-81. Review.

PMID:
15694870
13.

Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption.

Michael H, Härkönen PL, Väänänen HK, Hentunen TA.

J Bone Miner Res. 2005 Dec;20(12):2224-32.

14.

The osteoclast, bone remodelling and treatment of metabolic bone disease.

Boyce BF, Rosenberg E, de Papp AE, Duong LT.

Eur J Clin Invest. 2012 Dec;42(12):1332-41. doi: 10.1111/j.1365-2362.2012.02717.x. Review.

PMID:
22998735
15.

Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.

Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS.

Biomed Res Int. 2015;2015:421746. doi: 10.1155/2015/421746. Review.

16.

Osteoblast-osteoclast relationships in bone resorption: osteoblasts enhance osteoclast activity in a serum-free co-culture system.

Teti A, Grano M, Colucci S, Cantatore FP, Loperfido MC, Zallone AZ.

Biochem Biophys Res Commun. 1991 Aug 30;179(1):634-40.

PMID:
1652961
17.

Similar healthy osteoclast and osteoblast activity on nanocrystalline hydroxyapatite and nanoparticles of tri-calcium phosphate compared to natural bone.

MacMillan AK, Lamberti FV, Moulton JN, Geilich BM, Webster TJ.

Int J Nanomedicine. 2014 Dec 2;9:5627-37. doi: 10.2147/IJN.S66852.

18.

TNAP, TrAP, ecto-purinergic signaling, and bone remodeling.

Kaunitz JD, Yamaguchi DT.

J Cell Biochem. 2008 Oct 15;105(3):655-62. doi: 10.1002/jcb.21885. Review.

PMID:
18773425
19.

[Local factors in bone repair].

Bergmann P.

Rev Med Brux. 1989 Dec;10(10):419-23. Review. French.

PMID:
2690263
20.

The regulation of osteoclastic development and function.

Chambers TJ.

Ciba Found Symp. 1988;136:92-107. Review.

PMID:
3068019

Supplemental Content

Support Center