Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

Reconstructing complex regions of genomes using long-read sequencing technology.

Huddleston J, Ranade S, Malig M, Antonacci F, Chaisson M, Hon L, Sudmant PH, Graves TA, Alkan C, Dennis MY, Wilson RK, Turner SW, Korlach J, Eichler EE.

Genome Res. 2014 Apr;24(4):688-96. doi: 10.1101/gr.168450.113. Epub 2014 Jan 13.

2.

SMRT sequencing only de novo assembly of the sugar beet (Beta vulgaris) chloroplast genome.

Stadermann KB, Weisshaar B, Holtgräwe D.

BMC Bioinformatics. 2015 Sep 16;16:295. doi: 10.1186/s12859-015-0726-6.

3.

Performance comparison of second- and third-generation sequencers using a bacterial genome with two chromosomes.

Miyamoto M, Motooka D, Gotoh K, Imai T, Yoshitake K, Goto N, Iida T, Yasunaga T, Horii T, Arakawa K, Kasahara M, Nakamura S.

BMC Genomics. 2014 Aug 21;15:699. doi: 10.1186/1471-2164-15-699.

4.

Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology.

English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid JG, Worley KC, Gibbs RA.

PLoS One. 2012;7(11):e47768. doi: 10.1371/journal.pone.0047768. Epub 2012 Nov 21.

5.

Assessing the feasibility of GS FLX Pyrosequencing for sequencing the Atlantic salmon genome.

Quinn NL, Levenkova N, Chow W, Bouffard P, Boroevich KA, Knight JR, Jarvie TP, Lubieniecki KP, Desany BA, Koop BF, Harkins TT, Davidson WS.

BMC Genomics. 2008 Aug 28;9:404. doi: 10.1186/1471-2164-9-404.

6.

PacBio But Not Illumina Technology Can Achieve Fast, Accurate and Complete Closure of the High GC, Complex Burkholderia pseudomallei Two-Chromosome Genome.

Teng JLL, Yeung ML, Chan E, Jia L, Lin CH, Huang Y, Tse H, Wong SSY, Sham PC, Lau SKP, Woo PCY.

Front Microbiol. 2017 Aug 2;8:1448. doi: 10.3389/fmicb.2017.01448. eCollection 2017.

7.

Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome.

Faino L, Seidl MF, Datema E, van den Berg GC, Janssen A, Wittenberg AH, Thomma BP.

MBio. 2015 Aug 18;6(4). pii: e00936-15. doi: 10.1128/mBio.00936-15.

8.

454 sequencing put to the test using the complex genome of barley.

Wicker T, Schlagenhauf E, Graner A, Close TJ, Keller B, Stein N.

BMC Genomics. 2006 Oct 26;7:275.

9.

Assessing the benefits of using mate-pairs to resolve repeats in de novo short-read prokaryotic assemblies.

Wetzel J, Kingsford C, Pop M.

BMC Bioinformatics. 2011 Apr 13;12:95. doi: 10.1186/1471-2105-12-95.

10.

SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information.

Boetzer M, Pirovano W.

BMC Bioinformatics. 2014 Jun 20;15:211. doi: 10.1186/1471-2105-15-211.

11.

Multiplex sequencing of bacterial artificial chromosomes for assembling complex plant genomes.

Beier S, Himmelbach A, Schmutzer T, Felder M, Taudien S, Mayer KF, Platzer M, Stein N, Scholz U, Mascher M.

Plant Biotechnol J. 2016 Jul;14(7):1511-22. doi: 10.1111/pbi.12511. Epub 2016 Jan 23.

12.

Efficient and accurate whole genome assembly and methylome profiling of E. coli.

Powers JG, Weigman VJ, Shu J, Pufky JM, Cox D, Hurban P.

BMC Genomics. 2013 Oct 3;14:675. doi: 10.1186/1471-2164-14-675.

13.

Reducing assembly complexity of microbial genomes with single-molecule sequencing.

Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM, Mcvey SD, Radune D, Bergman NH, Phillippy AM.

Genome Biol. 2013;14(9):R101.

14.

Improving genome assemblies by sequencing PCR products with PacBio.

Zhang X, Davenport KW, Gu W, Daligault HE, Munk AC, Tashima H, Reitenga K, Green LD, Han CS.

Biotechniques. 2012 Jul;53(1):61-2. doi: 10.2144/0000113891.

15.

Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data.

Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J.

Nat Methods. 2013 Jun;10(6):563-9. doi: 10.1038/nmeth.2474. Epub 2013 May 5.

16.

The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation.

Mavromatis K, Land ML, Brettin TS, Quest DJ, Copeland A, Clum A, Goodwin L, Woyke T, Lapidus A, Klenk HP, Cottingham RW, Kyrpides NC.

PLoS One. 2012;7(12):e48837. doi: 10.1371/journal.pone.0048837. Epub 2012 Dec 12.

17.

Characterization of structural variants with single molecule and hybrid sequencing approaches.

Ritz A, Bashir A, Sindi S, Hsu D, Hajirasouliha I, Raphael BJ.

Bioinformatics. 2014 Dec 15;30(24):3458-66. doi: 10.1093/bioinformatics/btu714. Epub 2014 Oct 28.

18.

[The principle and application of the single-molecule real-time sequencing technology].

Yanhu L, Lu W, Li Y.

Yi Chuan. 2015 Mar;37(3):259-68. doi: 10.16288/j.yczz.14-323. Review. Chinese.

PMID:
25787000
19.

Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

Nakano K, Shiroma A, Shimoji M, Tamotsu H, Ashimine N, Ohki S, Shinzato M, Minami M, Nakanishi T, Teruya K, Satou K, Hirano T.

Hum Cell. 2017 Jul;30(3):149-161. doi: 10.1007/s13577-017-0168-8. Epub 2017 Mar 31. Review.

20.

Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes.

Haiminen N, Feltus FA, Parida L.

BMC Genomics. 2011 Apr 15;12:194. doi: 10.1186/1471-2164-12-194.

Supplemental Content

Support Center