Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Studying modulation on simultaneously activated SSVEP neural networks by a cognitive task.

Wu Z.

J Biol Phys. 2014 Jan;40(1):55-70. doi: 10.1007/s10867-013-9335-7.

2.
3.

Physical connections between different SSVEP neural networks.

Wu Z.

Sci Rep. 2016 Mar 8;6:22801. doi: 10.1038/srep22801.

4.

Steady state visually evoked potential (SSVEP) topography in a graded working memory task.

Silberstein RB, Nunez PL, Pipingas A, Harris P, Danieli F.

Int J Psychophysiol. 2001 Oct;42(2):219-32.

PMID:
11587778
5.

Using frequency tagging to quantify attentional deployment in a visual divided attention task.

Toffanin P, de Jong R, Johnson A, Martens S.

Int J Psychophysiol. 2009 Jun;72(3):289-98.

PMID:
19452603
6.

Amplitude modulation of steady-state visual evoked potentials by event-related potentials in a working memory task.

Wu Z, Yao D, Tang Y, Huang Y, Su S.

J Biol Phys. 2010 Jun;36(3):261-71. doi: 10.1007/s10867-009-9181-9.

7.

Neurocognitive effects of multivitamin supplementation on the steady state visually evoked potential (SSVEP) measure of brain activity in elderly women.

Macpherson H, Silberstein R, Pipingas A.

Physiol Behav. 2012 Oct 10;107(3):346-54. doi: 10.1016/j.physbeh.2012.08.006.

PMID:
22939764
8.

A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.

Brunner C, Allison BZ, Altstätter C, Neuper C.

J Neural Eng. 2011 Apr;8(2):025010. doi: 10.1088/1741-2560/8/2/025010.

PMID:
21436538
9.

Steady-state visual evoked potentials reveal frontally-mediated working memory activity in humans.

Perlstein WM, Cole MA, Larson M, Kelly K, Seignourel P, Keil A.

Neurosci Lett. 2003 May 22;342(3):191-5.

PMID:
12757897
10.

Neural mechanisms of evoked oscillations: stability and interaction with transient events.

Moratti S, Clementz BA, Gao Y, Ortiz T, Keil A.

Hum Brain Mapp. 2007 Dec;28(12):1318-33.

PMID:
17274017
11.

Dynamic sculpting of brain functional connectivity is correlated with performance.

Silberstein RB, Song J, Nunez PL, Park W.

Brain Topogr. 2004 Summer;16(4):249-54.

PMID:
15379222
12.

Stimulator selection in SSVEP-based BCI.

Wu Z, Lai Y, Xia Y, Wu D, Yao D.

Med Eng Phys. 2008 Oct;30(8):1079-88. doi: 10.1016/j.medengphy.2008.01.004.

PMID:
18316226
13.

Competitive effects on steady-state visual evoked potentials with frequencies in- and outside the α band.

Keitel C, Andersen SK, Müller MM.

Exp Brain Res. 2010 Sep;205(4):489-95. doi: 10.1007/s00221-010-2384-2.

PMID:
20711565
14.

An SSVEP-based BCI using high duty-cycle visual flicker.

Lee PL, Yeh CL, Cheng JY, Yang CY, Lan GY.

IEEE Trans Biomed Eng. 2011 Dec;58(12):3350-9. doi: 10.1109/TBME.2011.2162586.

PMID:
21788179
15.

SSVEP response is related to functional brain network topology entrained by the flickering stimulus.

Zhang Y, Xu P, Huang Y, Cheng K, Yao D.

PLoS One. 2013 Sep 9;8(9):e72654. doi: 10.1371/journal.pone.0072654.

16.

An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.

Chang MH, Baek HJ, Lee SM, Park KS.

Clin Neurophysiol. 2014 Jul;125(7):1380-91. doi: 10.1016/j.clinph.2013.11.016.

PMID:
24368034
17.

The temporal interaction of modality specific and process specific neural networks supporting simple working memory tasks.

Protzner AB, Cortese F, Alain C, McIntosh AR.

Neuropsychologia. 2009 Jul;47(8-9):1954-63. doi: 10.1016/j.neuropsychologia.2009.03.007.

PMID:
19428428
18.

Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency.

Ding J, Sperling G, Srinivasan R.

Cereb Cortex. 2006 Jul;16(7):1016-29.

19.

Steady-state visually evoked potential topography during the continuous performance task in normal controls and schizophrenia.

Silberstein RB, Line P, Pipingas A, Copolov D, Harris P.

Clin Neurophysiol. 2000 May;111(5):850-7.

PMID:
10802456
20.

Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing.

Wu CH, Chang HC, Lee PL, Li KS, Sie JJ, Sun CW, Yang CY, Li PH, Deng HT, Shyu KK.

J Neurosci Methods. 2011 Mar 15;196(1):170-81. doi: 10.1016/j.jneumeth.2010.12.014.

PMID:
21194547

Supplemental Content

Support Center