Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 84

1.

Proteomic profiling of the phosphoproteins in the rat thalamus, hippocampus and frontal lobe after propofol anesthesia.

Tang J, Xue Q, Ding H, Qin Z, Xiao J, Lin C, Liu Y, Tao T.

BMC Anesthesiol. 2014 Jan 10;14:3. doi: 10.1186/1471-2253-14-3.

2.

Proteomic profiling of the insoluble fractions in the rat hippocampus post-propofol anesthesia.

Zhang X, Liu Y, Feng C, Yang S, Wang Y, Wu AS, Yue Y.

Neurosci Lett. 2009 Nov 13;465(2):165-70. doi: 10.1016/j.neulet.2009.08.025.

PMID:
19682543
3.

Proteomic analysis of phosphotyrosyl proteins in morphine-dependent rat brains.

Kim SY, Chudapongse N, Lee SM, Levin MC, Oh JT, Park HJ, Ho IK.

Brain Res Mol Brain Res. 2005 Jan 5;133(1):58-70.

PMID:
15661365
4.
5.

Profiling of the soluble proteome in rat hippocampus post propofol anesthesia.

Zhang X, Yang S, Yue Y, Wu A.

Neurochem Res. 2013 Dec;38(12):2661-7. doi: 10.1007/s11064-013-1184-z.

PMID:
24214022
6.
7.

Propofol and ketamine-induced anesthetic depth-dependent decrease of CaMKII phosphorylation levels in rat hippocampus and cortex.

Cui X, Li J, Li T, Ji F, Bu X, Zhang N, Zhang B.

J Neurosurg Anesthesiol. 2009 Apr;21(2):145-54. doi: 10.1097/ANA.0b013e31819ac2c0.

PMID:
19295394
8.

Proteomics of rat hypothalamus, hippocampus and pre-frontal/frontal cortex after central administration of the neuropeptide PACAP.

Gasperini L, Piubelli C, Carboni L.

Mol Biol Rep. 2012 Mar;39(3):2921-35. doi: 10.1007/s11033-011-1054-1.

PMID:
21687973
10.

Anesthetic properties of 4-iodopropofol: implications for mechanisms of anesthesia.

Lingamaneni R, Krasowski MD, Jenkins A, Truong T, Giunta AL, Blackbeer J, MacIver MB, Harrison NL, Hemmings HC Jr.

Anesthesiology. 2001 Jun;94(6):1050-7.

PMID:
11465597
11.

Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy.

Liu XY, Yang JL, Chen LJ, Zhang Y, Yang ML, Wu YY, Li FQ, Tang MH, Liang SF, Wei YQ.

Proteomics. 2008 Feb;8(3):582-603. doi: 10.1002/pmic.200700514.

PMID:
18186018
12.
13.

The action sites of propofol in the normal human brain revealed by functional magnetic resonance imaging.

Zhang H, Wang W, Zhao Z, Ge Y, Zhang J, Yu D, Chai W, Wu S, Xu L.

Anat Rec (Hoboken). 2010 Dec;293(12):1985-90. doi: 10.1002/ar.21069.

14.

Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane.

Huang Z, Ichihara S, Oikawa S, Chang J, Zhang L, Hu S, Huang H, Ichihara G.

Toxicol Appl Pharmacol. 2015 Jan 15;282(2):151-60. doi: 10.1016/j.taap.2014.10.016.

PMID:
25448045
15.

Large-scale study of phosphoproteins involved in long-term potentiation in the rat dentate gyrus in vivo.

Chardonnet S, Le Marechal P, Cheval H, Le Caer JP, Decottignies P, Laprevote O, Laroche S, Davis S.

Eur J Neurosci. 2008 Jun;27(11):2985-98. doi: 10.1111/j.1460-9568.2008.06280.x.

PMID:
18588538
16.

Repeated exposure to propofol potentiates neuroapoptosis and long-term behavioral deficits in neonatal rats.

Yu D, Jiang Y, Gao J, Liu B, Chen P.

Neurosci Lett. 2013 Feb 8;534:41-6. doi: 10.1016/j.neulet.2012.12.033.

PMID:
23295901
17.

Mass spectrometrical analysis of phosphoprotein enriched in astrocytes of 15 kDa in mouse hippocampi.

Shin JH, Delabar JM, Lubec G.

Amino Acids. 2004 Dec;27(3-4):339-44.

PMID:
15538643
18.

Proteomic analysis reveals changes in the hippocampus protein pattern of rats exposed to dietary zinc deficiency.

Liu J, Jiang Y, Huang C, Fang H, Fang H, Pang W.

Electrophoresis. 2010 Apr;31(8):1302-10. doi: 10.1002/elps.200900733.

PMID:
20309891
19.
20.

[Morphology and differentially expressed proteins in hippocampus of mesial temporal lobe epilepsy model of immature rats induced by pilocarpine].

Wu L, Yin F, Peng J, He F, Zhang C, Deng X, Wang G.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2013 Jun;38(6):560-9. doi: 10.3969/j.issn.1672-7347.2013.06.003. Chinese.

Items per page

Supplemental Content

Support Center