Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 179

1.

Ag(I)-bovine serum albumin hydrosol-mediated formation of Ag3PO4/reduced graphene oxide composites for visible-light degradation of Rhodamine B solution.

Ma P, Chen A, Wu Y, Fu Z, Kong W, Che L, Ma R.

J Colloid Interface Sci. 2014 Mar 1;417:293-300. doi: 10.1016/j.jcis.2013.11.045. Epub 2013 Nov 23.

PMID:
24407690
2.

Ag3PO4/graphene-oxide composite with remarkably enhanced visible-light-driven photocatalytic activity toward dyes in water.

Chen G, Sun M, Wei Q, Zhang Y, Zhu B, Du B.

J Hazard Mater. 2013 Jan 15;244-245:86-93. doi: 10.1016/j.jhazmat.2012.11.032. Epub 2012 Nov 21.

PMID:
23246944
3.

Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets.

Liang Q, Shi Y, Ma W, Li Z, Yang X.

Phys Chem Chem Phys. 2012 Dec 5;14(45):15657-65. doi: 10.1039/c2cp42465g. Epub 2012 Oct 18.

PMID:
23080357
4.

Nanocomposite of exfoliated bentonite/g-C3N4/Ag3PO4 for enhanced visible-light photocatalytic decomposition of Rhodamine B.

Ma J, Huang D, Zhang W, Zou J, Kong Y, Zhu J, Komarneni S.

Chemosphere. 2016 Nov;162:269-76. doi: 10.1016/j.chemosphere.2016.07.089. Epub 2016 Aug 6.

PMID:
27505138
5.

Synthesis and characterization of Ag₃PO₄ immobilized with graphene oxide (GO) for enhanced photocatalytic activity and stability over 2,4-dichlorophenol under visible light irradiation.

Chen XJ, Dai YZ, Wang XY, Guo J, Liu TH, Li FF.

J Hazard Mater. 2015 Jul 15;292:9-18. doi: 10.1016/j.jhazmat.2015.01.032. Epub 2015 Jan 13.

PMID:
25781371
6.

Reduced Graphene Oxide-Ag3PO4 Heterostructure: A Direct Z-Scheme Photocatalyst for Augmented Photoreactivity and Stability.

Samal A, Das DP, Nanda KK, Mishra BK, Das J, Dash A.

Chem Asian J. 2016 Feb 18;11(4):584-95. doi: 10.1002/asia.201501286. Epub 2016 Jan 8.

PMID:
26639552
7.

New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel.

He Y, Zhang L, Teng B, Fan M.

Environ Sci Technol. 2015 Jan 6;49(1):649-56. doi: 10.1021/es5046309. Epub 2014 Dec 17.

PMID:
25485763
8.

Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity.

Sher Shah MS, Zhang K, Park AR, Kim KS, Park NG, Park JH, Yoo PJ.

Nanoscale. 2013 Jun 7;5(11):5093-101. doi: 10.1039/c3nr00579h. Epub 2013 May 3.

PMID:
23640656
9.

Enhanced photoactivity on Ag/Ag3PO4 composites by plasmonic effect.

Gondal MA, Chang X, Sha WE, Yamani ZH, Zhou Q.

J Colloid Interface Sci. 2013 Feb 15;392:325-30. doi: 10.1016/j.jcis.2012.09.086. Epub 2012 Nov 8.

PMID:
23200349
10.

Photocatalytic Performances of Ag3PO4 Polypods for Degradation of Dye Pollutant under Natural Indoor Weak Light Irradiation.

Teng F, Liu Z, Zhang A, Li M.

Environ Sci Technol. 2015 Aug 18;49(16):9489-94. doi: 10.1021/acs.est.5b00735. Epub 2015 Apr 1.

PMID:
25807447
11.

Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light.

Zhang H, Fan X, Quan X, Chen S, Yu H.

Environ Sci Technol. 2011 Jul 1;45(13):5731-6. doi: 10.1021/es2002919. Epub 2011 Jun 10.

PMID:
21663048
12.

Assembly of Ag3PO4 nanocrystals on graphene-based nanosheets with enhanced photocatalytic performance.

Bai S, Shen X, Lv H, Zhu G, Bao C, Shan Y.

J Colloid Interface Sci. 2013 Sep 1;405:1-9. doi: 10.1016/j.jcis.2013.05.023. Epub 2013 May 23.

PMID:
23768726
13.

Preparation of Ag@Ag₃PO₄@ZnO ternary heterostructures for photocatalytic studies.

Jin C, Liu G, Zu L, Qin Y, Yang J.

J Colloid Interface Sci. 2015 Sep 1;453:36-41. doi: 10.1016/j.jcis.2015.03.066. Epub 2015 Apr 30.

PMID:
25965430
14.

Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange.

Cao J, Luo B, Lin H, Xu B, Chen S.

J Hazard Mater. 2012 May 30;217-218:107-15. doi: 10.1016/j.jhazmat.2012.03.002. Epub 2012 Mar 7.

PMID:
22464754
15.

Controllable synthesis and adjustable antineoplastic activity of bovine serum albumin-conjugated PbS/Ag2S core/shell nano-composites.

Wang HJ, Yu XH, Cao Y, Zhou B, Wang CF.

J Inorg Biochem. 2012 Aug;113:40-6. doi: 10.1016/j.jinorgbio.2012.04.004. Epub 2012 Apr 21.

PMID:
22687493
16.

Preparation of graphitic carbon nitride (g-C₃N₄)/WO₃ composites and enhanced visible-light-driven photodegradation of acetaldehyde gas.

Katsumata K, Motoyoshi R, Matsushita N, Okada K.

J Hazard Mater. 2013 Sep 15;260:475-82. doi: 10.1016/j.jhazmat.2013.05.058. Epub 2013 Jun 7.

PMID:
23811369
17.

Graphene-spindle shaped TiO₂ mesocrystal composites: facile synthesis and enhanced visible light photocatalytic performance.

Yang X, Qin J, Li Y, Zhang R, Tang H.

J Hazard Mater. 2013 Oct 15;261:342-50. doi: 10.1016/j.jhazmat.2013.07.044. Epub 2013 Jul 26.

PMID:
23959254
18.

Synthesis of a ternary Ag/RGO/ZnO nanocomposite via microwave irradiation and its application for the degradation of Rhodamine B under visible light.

Surendran DK, Xavier MM, Viswanathan VP, Mathew S.

Environ Sci Pollut Res Int. 2017 Jun;24(18):15360-15368. doi: 10.1007/s11356-017-9135-x. Epub 2017 May 14.

PMID:
28502053
19.

In situ fabrication of Ag3PO4/TiO2 nanotube heterojunctions with enhanced visible-light photocatalytic activity.

Tong ZW, Yang D, Sun YY, Tian Y, Jiang ZY.

Phys Chem Chem Phys. 2015 May 14;17(18):12199-206. doi: 10.1039/c4cp05851h.

PMID:
25884048
20.

Graphene-analogue BN-modified microspherical BiOI photocatalysts driven by visible light.

Liu D, Jiang Z, Zhu C, Qian K, Wu Z, Xie J.

Dalton Trans. 2016 Feb 14;45(6):2505-16. doi: 10.1039/c5dt03408f. Epub 2015 Dec 24.

PMID:
26698369

Supplemental Content

Support Center