Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Manufacturing and wetting low-cost microfluidic cell separation devices.

Pawell RS, Inglis DW, Barber TJ, Taylor RA.

Biomicrofluidics. 2013 Sep 11;7(5):56501. doi: 10.1063/1.4821315. eCollection 2013. Erratum in: Biomicrofluidics. 2013 Oct 24;7(5):59901.

2.

Automated leukocyte processing by microfluidic deterministic lateral displacement.

Civin CI, Ward T, Skelley AM, Gandhi K, Peilun Lee Z, Dosier CR, D'Silva JL, Chen Y, Kim M, Moynihan J, Chen X, Aurich L, Gulnik S, Brittain GC, Recktenwald DJ, Austin RH, Sturm JC.

Cytometry A. 2016 Dec;89(12):1073-1083. doi: 10.1002/cyto.a.23019. Epub 2016 Nov 22.

3.

A polymeric master replication technology for mass fabrication of poly(dimethylsiloxane) microfluidic devices.

Li HF, Lin JM, Su RG, Cai ZW, Uchiyama K.

Electrophoresis. 2005 May;26(9):1825-33.

PMID:
15812838
4.
5.

AC electrokinetic biased deterministic lateral displacement for tunable particle separation.

Calero V, Garcia-Sanchez P, Honrado C, Ramos A, Morgan H.

Lab Chip. 2019 Apr 9;19(8):1386-1396. doi: 10.1039/c8lc01416g.

PMID:
30912779
6.

On the transport of particles/cells in high-throughput deterministic lateral displacement devices: Implications for circulating tumor cell separation.

Aghilinejad A, Aghaamoo M, Chen X.

Biomicrofluidics. 2019 May 24;13(3):034112. doi: 10.1063/1.5092718. eCollection 2019 May.

PMID:
31186821
7.

Liquid-based stationary phase for deterministic lateral displacement separation in microfluidics.

Du S, Shojaei-Zadeh S, Drazer G.

Soft Matter. 2017 Oct 25;13(41):7649-7656. doi: 10.1039/c7sm01510k.

PMID:
28990019
8.

Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.

Park J, Li J, Han A.

Biomed Microdevices. 2010 Apr;12(2):345-51. doi: 10.1007/s10544-009-9390-9.

9.

Anisotropic permeability in deterministic lateral displacement arrays.

Vernekar R, Krüger T, Loutherback K, Morton K, W Inglis D.

Lab Chip. 2017 Sep 26;17(19):3318-3330. doi: 10.1039/c7lc00785j.

PMID:
28861573
10.

Two-dimensional Simulation of Motion of Red Blood Cells with Deterministic Lateral Displacement Devices.

Jiao Y, He Y, Jiao F.

Micromachines (Basel). 2019 Jun 12;10(6). pii: E393. doi: 10.3390/mi10060393.

11.

Deterministic lateral displacement for particle separation: a review.

McGrath J, Jimenez M, Bridle H.

Lab Chip. 2014 Nov 7;14(21):4139-58. doi: 10.1039/c4lc00939h. Review.

PMID:
25212386
12.

Anticipating Cutoff Diameters in Deterministic Lateral Displacement (DLD) Microfluidic Devices for an Optimized Particle Separation.

Pariset E, Pudda C, Boizot F, Verplanck N, Berthier J, Thuaire A, Agache V.

Small. 2017 Oct;13(37). doi: 10.1002/smll.201701901. Epub 2017 Aug 7.

PMID:
28783259
13.

Controlled incremental filtration: a simplified approach to design and fabrication of high-throughput microfluidic devices for selective enrichment of particles.

Gifford SC, Spillane AM, Vignes SM, Shevkoplyas SS.

Lab Chip. 2014 Dec 7;14(23):4496-505. doi: 10.1039/c4lc00785a. Epub 2014 Sep 25.

14.

Purification of complex samples: Implementation of a modular and reconfigurable droplet-based microfluidic platform with cascaded deterministic lateral displacement separation modules.

Pariset E, Pudda C, Boizot F, Verplanck N, Revol-Cavalier F, Berthier J, Thuaire A, Agache V.

PLoS One. 2018 May 16;13(5):e0197629. doi: 10.1371/journal.pone.0197629. eCollection 2018.

15.

Gravity driven deterministic lateral displacement for particle separation in microfluidic devices.

Devendra R, Drazer G.

Anal Chem. 2012 Dec 18;84(24):10621-7. doi: 10.1021/ac302074b. Epub 2012 Nov 29.

PMID:
23137317
16.

Separation of Biological Particles in a Modular Platform of Cascaded Deterministic Lateral Displacement Modules.

Pariset E, Parent C, Fouillet Y, François B, Verplanck N, Revol-Cavalier F, Thuaire A, Agache V.

Sci Rep. 2018 Dec 10;8(1):17762. doi: 10.1038/s41598-018-34958-8.

17.

Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications.

Yue W, Li CW, Xu T, Yang M.

Biosens Bioelectron. 2013 Mar 15;41:675-83. doi: 10.1016/j.bios.2012.09.046. Epub 2012 Sep 29.

PMID:
23122749
18.

Breakdown of deterministic lateral displacement efficiency for non-dilute suspensions: A numerical study.

Vernekar R, Krüger T.

Med Eng Phys. 2015 Sep;37(9):845-54. doi: 10.1016/j.medengphy.2015.06.004. Epub 2015 Jul 2.

PMID:
26143149
19.

Numerical Study of Pillar Shapes in Deterministic Lateral Displacement Microfluidic Arrays for Spherical Particle Separation.

Wei J, Song H, Shen Z, He Y, Xu X, Zhang Y, Li BN.

IEEE Trans Nanobioscience. 2015 Sep;14(6):660-7. doi: 10.1109/TNB.2015.2431855. Epub 2015 May 21.

PMID:
26011890
20.

Rapid Prototyping of Thermoplastic Microfluidic Devices.

Novak R, Ng CF, Ingber DE.

Methods Mol Biol. 2018;1771:161-170. doi: 10.1007/978-1-4939-7792-5_13.

PMID:
29633212

Supplemental Content

Support Center