Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 254

1.

Porous M(II)/pyrimidine-4,6-dicarboxylato neutral frameworks: synthetic influence on the adsorption capacity and evaluation of CO2-adsorbent interactions.

Cepeda J, Pérez-Yáñez S, Beobide G, Castillo O, Fischer M, Luque A, Wright PA.

Chemistry. 2014 Feb 3;20(6):1554-68. doi: 10.1002/chem.201303627. Epub 2014 Jan 8.

PMID:
24403128
2.

Synthetic control to achieve lanthanide(III)/pyrimidine-4,6-dicarboxylate compounds by preventing oxalate formation: structural, magnetic, and luminescent properties.

Cepeda J, Balda R, Beobide G, Castillo O, Fernández J, Luque A, Pérez-Yáñez S, Román P.

Inorg Chem. 2012 Jul 16;51(14):7875-88. doi: 10.1021/ic3009392. Epub 2012 Jun 22.

PMID:
22726123
3.

Gas adsorption properties of highly porous metal-organic frameworks containing functionalized naphthalene dicarboxylate linkers.

Sim J, Yim H, Ko N, Choi SB, Oh Y, Park HJ, Park S, Kim J.

Dalton Trans. 2014 Dec 28;43(48):18017-24. doi: 10.1039/c4dt02300e.

PMID:
25351165
4.

Programmed pore architectures in modular quaternary metal-organic frameworks.

Liu L, Konstas K, Hill MR, Telfer SG.

J Am Chem Soc. 2013 Nov 27;135(47):17731-4. doi: 10.1021/ja4100244. Epub 2013 Nov 13.

PMID:
24180695
5.

Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology.

Parkes MV, Staiger CL, Perry JJ 4th, Allendorf MD, Greathouse JA.

Phys Chem Chem Phys. 2013 Jun 21;15(23):9093-106. doi: 10.1039/c3cp50774b. Epub 2013 May 3.

PMID:
23646358
6.

Optimization of reaction conditions towards multiple types of framework isomers and periodic-increased porosity: luminescence properties and selective CO2 adsorption over N2.

Wu XL, Luo F, Sun GM, Zheng AM, Zhang J, Luo MB, Xu WY, Zhu Y, Zhang XM, Huang SY.

Chemphyschem. 2013 Oct 21;14(15):3594-9. doi: 10.1002/cphc.201300564. Epub 2013 Sep 3.

PMID:
24038959
7.

Charge distribution in metal organic framework materials: transferability to a preliminary molecular simulation study of the CO(2) adsorption in the MIL-53 (Al) system.

Ramsahye NA, Maurin G, Bourrelly S, Llewellyn P, Loiseau T, Ferey G.

Phys Chem Chem Phys. 2007 Mar 7;9(9):1059-63. Epub 2006 Nov 15.

PMID:
17311147
8.

Thermodynamic screening of metal-substituted MOFs for carbon capture.

Koh HS, Rana MK, Hwang J, Siegel DJ.

Phys Chem Chem Phys. 2013 Apr 7;15(13):4573-81. doi: 10.1039/c3cp50622c.

PMID:
23420035
9.

Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture.

Lin Y, Yan Q, Kong C, Chen L.

Sci Rep. 2013;3:1859. doi: 10.1038/srep01859.

10.

High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites.

Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM, Zoppi M, Walker GS, Thomas KM, Mays TJ, Hubberstey P, Champness NR, Schröder M.

J Am Chem Soc. 2009 Feb 18;131(6):2159-71. doi: 10.1021/ja806624j.

PMID:
19159298
11.

Remarkable CO2/CH4 selectivity and CO2 adsorption capacity exhibited by polyamine-decorated metal-organic framework adsorbents.

Yan Q, Lin Y, Kong C, Chen L.

Chem Commun (Camb). 2013 Aug 7;49(61):6873-5. doi: 10.1039/c3cc43352h. Epub 2013 Jun 24.

PMID:
23793034
12.

An In-Depth Structural Study of the Carbon Dioxide Adsorption Process in the Porous Metal-Organic Frameworks CPO-27-M.

Pato-Doldán B, Rosnes MH, Dietzel PDC.

ChemSusChem. 2017 Apr 22;10(8):1710-1719. doi: 10.1002/cssc.201601752. Epub 2017 Mar 16.

PMID:
28052597
13.

Thermally induced interconversions of metal-pyrimidine-4,6-dicarboxylate polymers: a structural, spectroscopic, and magnetic study.

Masciocchi N, Galli S, Tagliabue G, Sironi A, Castillo O, Luque A, Beobide G, Wang W, Romero MA, Barea E, Navarro JA.

Inorg Chem. 2009 Apr 6;48(7):3087-94. doi: 10.1021/ic802365w.

PMID:
19281181
14.

Progress in adsorption-based CO2 capture by metal-organic frameworks.

Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J.

Chem Soc Rev. 2012 Mar 21;41(6):2308-22. doi: 10.1039/c1cs15221a. Epub 2011 Dec 5. Review.

PMID:
22143077
15.

Enhancing gas adsorption and separation capacity through ligand functionalization of microporous metal-organic framework structures.

Zhao Y, Wu H, Emge TJ, Gong Q, Nijem N, Chabal YJ, Kong L, Langreth DC, Liu H, Zeng H, Li J.

Chemistry. 2011 Apr 26;17(18):5101-9. doi: 10.1002/chem.201002818. Epub 2011 Mar 23.

PMID:
21433121
16.

Adsorption study of CO2, CH4, N2, and H2O on an interwoven copper carboxylate metal-organic framework (MOF-14).

Karra JR, Grabicka BE, Huang YG, Walton KS.

J Colloid Interface Sci. 2013 Feb 15;392:331-6. doi: 10.1016/j.jcis.2012.10.018. Epub 2012 Oct 22.

PMID:
23158044
17.

Enhancing selective CO2 adsorption via chemical reduction of a redox-active metal-organic framework.

Leong CF, Faust TB, Turner P, Usov PM, Kepert CJ, Babarao R, Thornton AW, D'Alessandro DM.

Dalton Trans. 2013 Jul 21;42(27):9831-9. doi: 10.1039/c3dt00083d. Epub 2013 Mar 22.

PMID:
23519323
18.

Mn(II)-based porous metal-organic framework showing metamagnetic properties and high hydrogen adsorption at low pressure.

Han ZB, Lu RY, Liang YF, Zhou YL, Chen Q, Zeng MH.

Inorg Chem. 2012 Jan 2;51(1):674-9. doi: 10.1021/ic2021929. Epub 2011 Dec 5.

PMID:
22141338
19.

Lanthanide(III)/pyrimidine-4,6-dicarboxylate/oxalate extended frameworks: a detailed study based on the lanthanide contraction and temperature effects.

Cepeda J, Balda R, Beobide G, Castillo O, Fernández J, Luque A, Pérez-Yáñez S, Román P, Vallejo-Sánchez D.

Inorg Chem. 2011 Sep 5;50(17):8437-51. doi: 10.1021/ic201013v. Epub 2011 Jul 29.

PMID:
21800833
20.

Supplemental Content

Support Center