Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 133

1.

Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis.

Li W, Li Q, Jiao Y, Qin L, Ali R, Zhou J, Ferruzzi J, Kim RW, Geirsson A, Dietz HC, Offermanns S, Humphrey JD, Tellides G.

J Clin Invest. 2014 Feb;124(2):755-67. doi: 10.1172/JCI69942.

2.

Disruption of TGF-β signaling in smooth muscle cell prevents elastase-induced abdominal aortic aneurysm.

Gao F, Chambon P, Offermanns S, Tellides G, Kong W, Zhang X, Li W.

Biochem Biophys Res Commun. 2014 Nov 7;454(1):137-43. doi: 10.1016/j.bbrc.2014.10.053. Erratum in: Biochem Biophys Res Commun. 2015 May 8;460(3):887.

PMID:
25450370
3.

Angiotensin II-dependent TGF-β signaling contributes to Loeys-Dietz syndrome vascular pathogenesis.

Gallo EM, Loch DC, Habashi JP, Calderon JF, Chen Y, Bedja D, van Erp C, Gerber EE, Parker SJ, Sauls K, Judge DP, Cooke SK, Lindsay ME, Rouf R, Myers L, ap Rhys CM, Kent KC, Norris RA, Huso DL, Dietz HC.

J Clin Invest. 2014 Jan;124(1):448-60. doi: 10.1172/JCI69666.

4.

TGFBR2 mutations alter smooth muscle cell phenotype and predispose to thoracic aortic aneurysms and dissections.

Inamoto S, Kwartler CS, Lafont AL, Liang YY, Fadulu VT, Duraisamy S, Willing M, Estrera A, Safi H, Hannibal MC, Carey J, Wiktorowicz J, Tan FK, Feng XH, Pannu H, Milewicz DM.

Cardiovasc Res. 2010 Dec 1;88(3):520-9. doi: 10.1093/cvr/cvq230.

5.

Conditional inactivation of TGF-β type II receptor in smooth muscle cells and epicardium causes lethal aortic and cardiac defects.

Langlois D, Hneino M, Bouazza L, Parlakian A, Sasaki T, Bricca G, Li JY.

Transgenic Res. 2010 Dec;19(6):1069-82. doi: 10.1007/s11248-010-9379-4.

PMID:
20213136
6.

Postnatal Deletion of the Type II Transforming Growth Factor-β Receptor in Smooth Muscle Cells Causes Severe Aortopathy in Mice.

Hu JH, Wei H, Jaffe M, Airhart N, Du L, Angelov SN, Yan J, Allen JK, Kang I, Wight TN, Fox K, Smith A, Enstrom R, Dichek DA.

Arterioscler Thromb Vasc Biol. 2015 Dec;35(12):2647-56. doi: 10.1161/ATVBAHA.115.306573.

7.

Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling.

Gao F, Chambon P, Tellides G, Kong W, Zhang X, Li W.

Biochem Biophys Res Commun. 2014 Nov 7;454(1):245-50. doi: 10.1016/j.bbrc.2014.10.092.

PMID:
25451249
8.

Impaired vascular contractility and aortic wall degeneration in fibulin-4 deficient mice: effect of angiotensin II type 1 (AT1) receptor blockade.

Moltzer E, te Riet L, Swagemakers SM, van Heijningen PM, Vermeij M, van Veghel R, Bouhuizen AM, van Esch JH, Lankhorst S, Ramnath NW, de Waard MC, Duncker DJ, van der Spek PJ, Rouwet EV, Danser AH, Essers J.

PLoS One. 2011;6(8):e23411. doi: 10.1371/journal.pone.0023411.

9.

Smad4 Deficiency in Smooth Muscle Cells Initiates the Formation of Aortic Aneurysm.

Zhang P, Hou S, Chen J, Zhang J, Lin F, Ju R, Cheng X, Ma X, Song Y, Zhang Y, Zhu M, Du J, Lan Y, Yang X.

Circ Res. 2016 Feb 5;118(3):388-99. doi: 10.1161/CIRCRESAHA.115.308040.

10.

p38 MAPK is an early determinant of promiscuous Smad2/3 signaling in the aortas of fibrillin-1 (Fbn1)-null mice.

Carta L, Smaldone S, Zilberberg L, Loch D, Dietz HC, Rifkin DB, Ramirez F.

J Biol Chem. 2009 Feb 27;284(9):5630-6. doi: 10.1074/jbc.M806962200.

11.

Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type II receptor signaling within the aged arterial wall.

Wang M, Zhao D, Spinetti G, Zhang J, Jiang LQ, Pintus G, Monticone R, Lakatta EG.

Arterioscler Thromb Vasc Biol. 2006 Jul;26(7):1503-9.

12.

The role of β-arrestin2-dependent signaling in thoracic aortic aneurysm formation in a murine model of Marfan syndrome.

Wisler JW, Harris EM, Raisch M, Mao L, Kim J, Rockman HA, Lefkowitz RJ.

Am J Physiol Heart Circ Physiol. 2015 Nov;309(9):H1516-27. doi: 10.1152/ajpheart.00291.2015.

13.

Defective Connective Tissue Remodeling in Smad3 Mice Leads to Accelerated Aneurysmal Growth Through Disturbed Downstream TGF-β Signaling.

van der Pluijm I, van Vliet N, von der Thusen JH, Robertus JL, Ridwan Y, van Heijningen PM, van Thiel BS, Vermeij M, Hoeks SE, Buijs-Offerman RM, Verhagen HJ, Kanaar R, Bertoli-Avella AM, Essers J.

EBioMedicine. 2016 Oct;12:280-294. doi: 10.1016/j.ebiom.2016.09.006.

14.

Systemic vasculopathy with altered vasoreactivity in a transgenic mouse model of scleroderma.

Derrett-Smith EC, Dooley A, Khan K, Shi-wen X, Abraham D, Denton CP.

Arthritis Res Ther. 2010;12(2):R69. doi: 10.1186/ar2986.

15.
16.

Vascular smooth muscle cell phenotypic changes in patients with Marfan syndrome.

Crosas-Molist E, Meirelles T, López-Luque J, Serra-Peinado C, Selva J, Caja L, Gorbenko Del Blanco D, Uriarte JJ, Bertran E, Mendizábal Y, Hernández V, García-Calero C, Busnadiego O, Condom E, Toral D, Castellà M, Forteza A, Navajas D, Sarri E, Rodríguez-Pascual F, Dietz HC, Fabregat I, Egea G.

Arterioscler Thromb Vasc Biol. 2015 Apr;35(4):960-72. doi: 10.1161/ATVBAHA.114.304412.

17.

Transforming growth factor-beta signaling in thoracic aortic aneurysm development: a paradox in pathogenesis.

Jones JA, Spinale FG, Ikonomidis JS.

J Vasc Res. 2009;46(2):119-37. doi: 10.1159/000151766. Review.

18.

Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis.

Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E.

Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2626-31.

19.

Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss.

Morris SM, Baek JY, Koszarek A, Kanngurn S, Knoblaugh SE, Grady WM.

Hepatology. 2012 Jan;55(1):121-31. doi: 10.1002/hep.24653.

20.

Transforming growth factor-β regulation of proteoglycan synthesis in vascular smooth muscle: contribution to lipid binding and accelerated atherosclerosis in diabetes.

Yang SN, Burch ML, Tannock LR, Evanko S, Osman N, Little PJ.

J Diabetes. 2010 Dec;2(4):233-42. doi: 10.1111/j.1753-0407.2010.00089.x. Review.

Supplemental Content

Support Center