Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 163

1.

The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice.

Long T, Zhu Z, Awad HA, Schwarz EM, Hilton MJ, Dong Y.

Biomaterials. 2014 Mar;35(9):2752-9. doi: 10.1016/j.biomaterials.2013.12.039. Epub 2014 Jan 3.

2.

Emerging ideas: Engineering the periosteum: revitalizing allografts by mimicking autograft healing.

Hoffman MD, Benoit DS.

Clin Orthop Relat Res. 2013 Mar;471(3):721-6. doi: 10.1007/s11999-012-2695-7. Epub 2012 Nov 21.

3.

Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering.

Zhang X, Xie C, Lin AS, Ito H, Awad H, Lieberman JR, Rubery PT, Schwarz EM, O'Keefe RJ, Guldberg RE.

J Bone Miner Res. 2005 Dec;20(12):2124-37. Epub 2005 Aug 8.

4.

Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering.

Xie C, Reynolds D, Awad H, Rubery PT, Pelled G, Gazit D, Guldberg RE, Schwarz EM, O'Keefe RJ, Zhang X.

Tissue Eng. 2007 Mar;13(3):435-45.

PMID:
17518596
5.

Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing.

Hoffman MD, Benoit DS.

Biomaterials. 2015 Jun;52:426-40. doi: 10.1016/j.biomaterials.2015.02.064. Epub 2015 Mar 18.

6.

A novel strategy incorporated the power of mesenchymal stem cells to allografts for segmental bone tissue engineering.

Zou XH, Cai HX, Yin Z, Chen X, Jiang YZ, Hu H, Ouyang HW.

Cell Transplant. 2009;18(4):433-41. doi: 10.3727/096368909788809839.

PMID:
19622230
7.

Human Mesenchymal Stromal Cell Sheet Enhances Allograft Repair in a Mouse Model.

Shang X, Shu B, Wang Y, Luo Z, Wang G, Barton S, Morandi MM, Kevil C, Dong Y.

Sci Rep. 2017 Aug 11;7(1):7982. doi: 10.1038/s41598-017-08804-2.

8.

Teriparatide therapy enhances devitalized femoral allograft osseointegration and biomechanics in a murine model.

Reynolds DG, Takahata M, Lerner AL, O'Keefe RJ, Schwarz EM, Awad HA.

Bone. 2011 Mar 1;48(3):562-70. doi: 10.1016/j.bone.2010.10.003. Epub 2010 Oct 13.

9.

The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing.

Hoffman MD, Xie C, Zhang X, Benoit DS.

Biomaterials. 2013 Nov;34(35):8887-98. doi: 10.1016/j.biomaterials.2013.08.005. Epub 2013 Aug 16.

10.

Self-complementary AAV2.5-BMP2-coated femoral allografts mediated superior bone healing versus live autografts in mice with equivalent biomechanics to unfractured femur.

Yazici C, Takahata M, Reynolds DG, Xie C, Samulski RJ, Samulski J, Beecham EJ, Gertzman AA, Spilker M, Zhang X, O'Keefe RJ, Awad HA, Schwarz EM.

Mol Ther. 2011 Aug;19(8):1416-25. doi: 10.1038/mt.2010.294. Epub 2011 Jan 4.

11.

Combined delivery of FGF-2, TGF-β1, and adipose-derived stem cells from an engineered periosteum to a critical-sized mouse femur defect.

Romero R, Travers JK, Asbury E, Pennybaker A, Chubb L, Rose R, Ehrhart NP, Kipper MJ.

J Biomed Mater Res A. 2017 Mar;105(3):900-911. doi: 10.1002/jbm.a.35965. Epub 2016 Dec 23.

PMID:
27874253
12.

A Novel Strategy Incorporated the Power of Mesenchymal Stem Cells to Allografts for Segmental Bone Tissue Engineering.

Zou XH, Cai HX, Yin Z, Chen X, Jiang YZ, Hu H, Ouyang HW.

Cell Transplant. 2010 Sep;19(9):1215. doi: 10.3727/09638910X539047.

PMID:
28853914
13.

Endothelial progenitors enhanced the osteogenic capacities of mesenchymal stem cells in vitro and in a rat alveolar bone defect model.

Liang Y, Wen L, Shang F, Wu J, Sui K, Ding Y.

Arch Oral Biol. 2016 Aug;68:123-30. doi: 10.1016/j.archoralbio.2016.04.007. Epub 2016 Apr 21.

PMID:
27131592
14.

Cell-based therapy by implanted human bone marrow-derived mononuclear cells improved bone healing of large bone defects in rats.

Seebach C, Henrich D, Schaible A, Relja B, Jugold M, Bönig H, Marzi I.

Tissue Eng Part A. 2015 May;21(9-10):1565-78. doi: 10.1089/ten.TEA.2014.0410. Epub 2015 Apr 13.

PMID:
25693739
15.

Sostdc1 deficiency accelerates fracture healing by promoting the expansion of periosteal mesenchymal stem cells.

Collette NM, Yee CS, Hum NR, Murugesh DK, Christiansen BA, Xie L, Economides AN, Manilay JO, Robling AG, Loots GG.

Bone. 2016 Jul;88:20-30. doi: 10.1016/j.bone.2016.04.005. Epub 2016 Apr 19.

16.

Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold.

Harada N, Watanabe Y, Sato K, Abe S, Yamanaka K, Sakai Y, Kaneko T, Matsushita T.

Biomaterials. 2014 Sep;35(27):7800-10. doi: 10.1016/j.biomaterials.2014.05.052. Epub 2014 Jun 19.

PMID:
24952976
17.

Autologous mesenchymal stem cells loaded in Gelfoam(®) for structural bone allograft healing in rabbits.

Lee JY, Choi MH, Shin EY, Kang YK.

Cell Tissue Bank. 2011 Nov;12(4):299-309. doi: 10.1007/s10561-010-9194-4. Epub 2010 Jul 21.

PMID:
20652421
18.

Mesenchymal stem cells expressing insulin-like growth factor-I (MSCIGF) promote fracture healing and restore new bone formation in Irs1 knockout mice: analyses of MSCIGF autocrine and paracrine regenerative effects.

Granero-Moltó F, Myers TJ, Weis JA, Longobardi L, Li T, Yan Y, Case N, Rubin J, Spagnoli A.

Stem Cells. 2011 Oct;29(10):1537-48. doi: 10.1002/stem.697.

19.

Systemic mesenchymal stem cell administration enhances bone formation in fracture repair but not load-induced bone formation.

Rapp AE, Bindl R, Heilmann A, Erbacher A, Müller I, Brenner RE, Ignatius A.

Eur Cell Mater. 2015 Jan 2;29:22-34.

20.

Physiologic load-bearing characteristics of autografts, allografts, and polymer-based scaffolds in a critical sized segmental defect of long bone: an experimental study.

Amorosa LF, Lee CH, Aydemir AB, Nizami S, Hsu A, Patel NR, Gardner TR, Navalgund A, Kim DG, Park SH, Mao JJ, Lee FY.

Int J Nanomedicine. 2013;8:1637-43. doi: 10.2147/IJN.S42855. Epub 2013 Apr 24.

Supplemental Content

Support Center