Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 272

1.

Improving efficiency by hybrid TiO(2) nanorods with 1,10-phenanthroline as a cathode buffer layer for inverted organic solar cells.

Sun C, Wu Y, Zhang W, Jiang N, Jiu T, Fang J.

ACS Appl Mater Interfaces. 2014 Jan 22;6(2):739-44. doi: 10.1021/am404423k. Epub 2014 Jan 3.

PMID:
24386910
2.

Imidazole-Functionalized Fullerene as a Vertically Phase-Separated Cathode Interfacial Layer of Inverted Ternary Polymer Solar Cells.

Li D, Liu Q, Zhen J, Fang Z, Chen X, Yang S.

ACS Appl Mater Interfaces. 2017 Jan 25;9(3):2720-2729. doi: 10.1021/acsami.6b13461. Epub 2017 Jan 11.

PMID:
28045489
3.

Physically adsorbed fullerene layer on positively charged sites on zinc oxide cathode affords efficiency enhancement in inverted polymer solar cell.

Cheng YS, Liao SH, Li YL, Chen SA.

ACS Appl Mater Interfaces. 2013 Jul 24;5(14):6665-71. doi: 10.1021/am401430h. Epub 2013 Jul 8.

PMID:
23796069
4.

High-efficiency inverted polymer solar cells controlled by the thickness of polyethylenimine ethoxylated (PEIE) interfacial layers.

Li P, Wang G, Cai L, Ding B, Zhou D, Hu Y, Zhang Y, Xiang J, Wan K, Chen L, Alameh K, Song Q.

Phys Chem Chem Phys. 2014 Nov 21;16(43):23792-9. doi: 10.1039/c4cp03484h. Epub 2014 Oct 2.

PMID:
25274177
5.

High efficiency of poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells through precrystallining of poly(3-hexylthiophene) based layer.

Chen L, Wang P, Chen Y.

ACS Appl Mater Interfaces. 2013 Jul 10;5(13):5986-93. doi: 10.1021/am401863r. Epub 2013 Jun 25.

PMID:
23763345
6.

Surface Modification of ZnO Layers via Hydrogen Plasma Treatment for Efficient Inverted Polymer Solar Cells.

Papamakarios V, Polydorou E, Soultati A, Droseros N, Tsikritzis D, Douvas AM, Palilis L, Fakis M, Kennou S, Argitis P, Vasilopoulou M.

ACS Appl Mater Interfaces. 2016 Jan 20;8(2):1194-205. doi: 10.1021/acsami.5b09533. Epub 2016 Jan 6.

PMID:
26696337
7.

Efficiency and air-stability improvement of flexible inverted polymer solar cells using ZnO/poly(ethylene glycol) hybrids as cathode buffer layers.

Hu T, Li F, Yuan K, Chen Y.

ACS Appl Mater Interfaces. 2013 Jun 26;5(12):5763-70. doi: 10.1021/am4013038. Epub 2013 Jun 14.

PMID:
23738498
8.

In Situ Formation of ZnO in Graphene: A Facile Way To Produce a Smooth and Highly Conductive Electron Transport Layer for Polymer Solar Cells.

Hu A, Wang Q, Chen L, Hu X, Zhang Y, Wu Y, Chen Y.

ACS Appl Mater Interfaces. 2015 Jul 29;7(29):16078-85. doi: 10.1021/acsami.5b04555. Epub 2015 Jul 15.

PMID:
26143932
9.

Enhanced performance in inverted polymer solar cells with D-Ļ€-A-type molecular dye incorporated on ZnO buffer layer.

Song CE, Ryu KY, Hong SJ, Bathula C, Lee SK, Shin WS, Lee JC, Choi SK, Kim JH, Moon SJ.

ChemSusChem. 2013 Aug;6(8):1445-54. doi: 10.1002/cssc.201300240. Epub 2013 Jun 12.

PMID:
23897708
10.

Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer.

Jia X, Zhang L, Luo Q, Lu H, Li X, Xie Z, Yang Y, Li YQ, Liu X, Ma CQ.

ACS Appl Mater Interfaces. 2016 Jul 20;8(28):18410-7. doi: 10.1021/acsami.6b03724. Epub 2016 Jul 11.

PMID:
27349330
11.

Poly(N-vinylpyrrolidone)-decorated reduced graphene oxide with ZnO grown in situ as a cathode buffer layer for polymer solar cells.

Hu T, Chen L, Yuan K, Chen Y.

Chemistry. 2014 Dec 15;20(51):17178-84. doi: 10.1002/chem.201404025. Epub 2014 Oct 24.

PMID:
25345881
12.

Low-Temperature Solution-Processed Thiophene-Sulfur-Doped Planar ZnO Nanorods as Electron-Transporting Layers for Enhanced Performance of Organic Solar Cells.

Ambade SB, Ambade RB, Bagde SS, Eom SH, Mane RS, Shin WS, Lee SH.

ACS Appl Mater Interfaces. 2017 Feb 1;9(4):3831-3841. doi: 10.1021/acsami.6b10843. Epub 2017 Jan 17.

PMID:
28029030
13.

Amphiphilic fullerene/ZnO hybrids as cathode buffer layers to improve charge selectivity of inverted polymer solar cells.

Hu T, Chen L, Yuan K, Chen Y.

Nanoscale. 2015 May 28;7(20):9194-203. doi: 10.1039/c5nr01456e.

PMID:
25924562
14.

Enhanced performance of polymer solar cell with ZnO nanoparticle electron transporting layer passivated by in situ cross-linked three-dimensional polymer network.

Wu Z, Song T, Xia Z, Wei H, Sun B.

Nanotechnology. 2013 Dec 6;24(48):484012. doi: 10.1088/0957-4484/24/48/484012. Epub 2013 Nov 6.

PMID:
24196730
15.
16.

Performance improvement in flexible polymer solar cells based on modified silver nanowire electrode.

Wang D, Zhou W, Liu H, Ma Y, Zhang H.

Nanotechnology. 2016 Aug 19;27(33):335203. doi: 10.1088/0957-4484/27/33/335203. Epub 2016 Jul 7.

PMID:
27383462
17.

Enhanced Power-Conversion Efficiency in Inverted Bulk Heterojunction Solar Cells using Liquid-Crystal-Conjugated Polyelectrolyte Interlayer.

Liu C, Tan Y, Li C, Wu F, Chen L, Chen Y.

ACS Appl Mater Interfaces. 2015 Sep 2;7(34):19024-33. doi: 10.1021/acsami.5b03340. Epub 2015 Aug 24.

PMID:
26280810
18.

[6,6]-phenyl-Cā‚†ā‚-butyric acid 2-((2-(dimethylamino)ethyl)(methyl)amino)-ethyl ester as an acceptor and cathode interfacial material in polymer solar cells.

Lv M, Lei M, Zhu J, Hirai T, Chen X.

ACS Appl Mater Interfaces. 2014 Apr 23;6(8):5844-51. doi: 10.1021/am5007047. Epub 2014 Apr 4.

PMID:
24660905
19.

Alcohol-soluble interfacial fluorenes for inverted polymer solar cells: sequence induced spatial conformation dipole moment.

Chen L, Liu X, Wei Y, Wu F, Chen Y.

Phys Chem Chem Phys. 2016 Jan 21;18(3):2219-29. doi: 10.1039/c5cp05589j. Epub 2015 Dec 22.

PMID:
26694627
20.

Interfacial Engineering Importance of Bilayered ZnO Cathode Buffer on the Photovoltaic Performance of Inverted Organic Solar Cells.

Ambade RB, Ambade SB, Mane RS, Lee SH.

ACS Appl Mater Interfaces. 2015 Apr 22;7(15):7951-60. doi: 10.1021/am509125c. Epub 2015 Apr 7.

PMID:
25804557

Supplemental Content

Support Center