Format
Sort by
Items per page

Send to

Choose Destination

Links from pubmed

Items: 1 to 20 of 87

1.

Light enhances survival of Dinoroseobacter shibae during long-term starvation.

Soora M, Cypionka H.

PLoS One. 2013 Dec 30;8(12):e83960. doi: 10.1371/journal.pone.0083960. eCollection 2013.

2.

Oxidative stress and starvation in Dinoroseobacter shibae: the role of extrachromosomal elements.

Soora M, Tomasch J, Wang H, Michael V, Petersen J, Engelen B, Wagner-Döbler I, Cypionka H.

Front Microbiol. 2015 Mar 25;6:233. doi: 10.3389/fmicb.2015.00233. eCollection 2015.

3.

Fixation of CO2 using the ethylmalonyl-CoA pathway in the photoheterotrophic marine bacterium Dinoroseobacter shibae.

Bill N, Tomasch J, Riemer A, Müller K, Kleist S, Schmidt-Hohagen K, Wagner-Döbler I, Schomburg D.

Environ Microbiol. 2017 Jul;19(7):2645-2660. doi: 10.1111/1462-2920.13746. Epub 2017 Jul 7.

PMID:
28371065
4.

Influence of light and anoxia on chemiosmotic energy conservation in Dinoroseobacter shibae.

Holert J, Hahnke S, Cypionka H.

Environ Microbiol Rep. 2011 Feb;3(1):136-141.

5.

Influence of light on carbon utilization in aerobic anoxygenic phototrophs.

Hauruseu D, Koblížek M.

Appl Environ Microbiol. 2012 Oct;78(20):7414-9. Epub 2012 Aug 10.

6.

Gene regulatory and metabolic adaptation processes of Dinoroseobacter shibae DFL12T during oxygen depletion.

Laass S, Kleist S, Bill N, Drüppel K, Kossmehl S, Wöhlbrand L, Rabus R, Klein J, Rohde M, Bartsch A, Wittmann C, Schmidt-Hohagen K, Tielen P, Jahn D, Schomburg D.

J Biol Chem. 2014 May 9;289(19):13219-31. doi: 10.1074/jbc.M113.545004. Epub 2014 Mar 19.

7.

Nonlinear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacterium Dinoroseobacter shibae.

Piwosz K, Kaftan D, Dean J, Šetlík J, Koblížek M.

Environ Microbiol. 2018 Feb;20(2):724-733. doi: 10.1111/1462-2920.14003. Epub 2017 Dec 7.

PMID:
29159858
8.

Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates.

Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lünsdorf H, Pukall R, Wagner-Döbler I.

Int J Syst Evol Microbiol. 2005 May;55(Pt 3):1089-96.

PMID:
15879238
9.

Chemiosmotic Energy Conservation in Dinoroseobacter shibae: Proton Translocation Driven by Aerobic Respiration, Denitrification, and Photosynthetic Light Reaction.

Kirchhoff C, Ebert M, Jahn D, Cypionka H.

Front Microbiol. 2018 May 9;9:903. doi: 10.3389/fmicb.2018.00903. eCollection 2018.

10.

Formation of polyhydroxyalkanoate in aerobic anoxygenic phototrophic bacteria and its relationship to carbon source and light availability.

Xiao N, Jiao N.

Appl Environ Microbiol. 2011 Nov;77(21):7445-50. doi: 10.1128/AEM.05955-11. Epub 2011 Sep 9.

11.

[Comparative study of metabolism of the purple photosynthetic bacteria grown in the light and in the dark under anaerobic and aerobic conditions].

Keppen OI, Krasil'nikova EN, Lebedeva NV, Ivanovskiĭ RN.

Mikrobiologiia. 2013 Sep-Oct;82(5):534-41. Russian.

PMID:
25509391
12.

Boosted Membrane Potential as Bioenergetic Response to Anoxia in Dinoroseobacter shibae.

Kirchhoff C, Cypionka H.

Front Microbiol. 2017 Apr 20;8:695. doi: 10.3389/fmicb.2017.00695. eCollection 2017.

13.

The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker's guide to life in the sea.

Wagner-Döbler I, Ballhausen B, Berger M, Brinkhoff T, Buchholz I, Bunk B, Cypionka H, Daniel R, Drepper T, Gerdts G, Hahnke S, Han C, Jahn D, Kalhoefer D, Kiss H, Klenk HP, Kyrpides N, Liebl W, Liesegang H, Meincke L, Pati A, Petersen J, Piekarski T, Pommerenke C, Pradella S, Pukall R, Rabus R, Stackebrandt E, Thole S, Thompson L, Tielen P, Tomasch J, von Jan M, Wanphrut N, Wichels A, Zech H, Simon M.

ISME J. 2010 Jan;4(1):61-77. doi: 10.1038/ismej.2009.94. Epub 2009 Sep 10.

PMID:
19741735
14.

Swimming in light: a large-scale computational analysis of the metabolism of Dinoroseobacter shibae.

Rex R, Bill N, Schmidt-Hohagen K, Schomburg D.

PLoS Comput Biol. 2013;9(10):e1003224. doi: 10.1371/journal.pcbi.1003224. Epub 2013 Oct 3.

15.

Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes.

Tomasch J, Gohl R, Bunk B, Diez MS, Wagner-Döbler I.

ISME J. 2011 Dec;5(12):1957-68. doi: 10.1038/ismej.2011.68. Epub 2011 Jun 9.

16.

Metabolic fluxes in the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis, two members of the marine Roseobacter clade.

Fürch T, Preusse M, Tomasch J, Zech H, Wagner-Döbler I, Rabus R, Wittmann C.

BMC Microbiol. 2009 Sep 29;9:209. doi: 10.1186/1471-2180-9-209.

17.

Viability and endogenous substrates used during starvation survival of Rhodospirillum rubrum.

Breznak JA, Potrikus CJ, Pfennig N, Ensign JC.

J Bacteriol. 1978 May;134(2):381-8.

19.

Dealing with salinity extremes and nitrogen limitation - an unexpected strategy of the marine bacterium Dinoroseobacter shibae.

Kleist S, Ulbrich M, Bill N, Schmidt-Hohagen K, Geffers R, Schomburg D.

Environ Microbiol. 2017 Mar;19(3):894-908. doi: 10.1111/1462-2920.13266. Epub 2016 Jun 15.

PMID:
26914854
20.

Phage adsorption and lytic propagation in Lactobacillus plantarum: could host cell starvation affect them?

Briggiler Marcó M, Reinheimer J, Quiberoni A.

BMC Microbiol. 2015 Dec 2;15:273. doi: 10.1186/s12866-015-0607-1.

Supplemental Content

Support Center