Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 231

1.

Altered phase-relationship between peripheral oscillators and environmental time in Cry1 or Cry2 deficient mouse models for early and late chronotypes.

Destici E, Jacobs EH, Tamanini F, Loos M, van der Horst GT, Oklejewicz M.

PLoS One. 2013 Dec 26;8(12):e83602. doi: 10.1371/journal.pone.0083602. eCollection 2013.

2.
3.

Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators.

Ruan GX, Gamble KL, Risner ML, Young LA, McMahon DG.

PLoS One. 2012;7(6):e38985. doi: 10.1371/journal.pone.0038985. Epub 2012 Jun 11.

4.

Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.

Bode B, Taneja R, Rossner MJ, Oster H.

Chronobiol Int. 2011 Nov;28(9):737-50. doi: 10.3109/07420528.2011.607374. Erratum in: Chronobiol Int. 2012 Apr;29(3):377. Taneja, Reshma [added].

PMID:
22080784
5.

Cry1-/- circadian rhythmicity depends on SCN intercellular coupling.

Evans JA, Pan H, Liu AC, Welsh DK.

J Biol Rhythms. 2012 Dec;27(6):443-52. doi: 10.1177/0748730412461246.

6.

Behavioural food anticipation in clock genes deficient mice: confirming old phenotypes, describing new phenotypes.

Mendoza J, Albrecht U, Challet E.

Genes Brain Behav. 2010 Jul;9(5):467-77. doi: 10.1111/j.1601-183X.2010.00576.x. Epub 2010 Feb 17.

7.

Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation.

Anand SN, Maywood ES, Chesham JE, Joynson G, Banks GT, Hastings MH, Nolan PM.

J Neurosci. 2013 Apr 24;33(17):7145-53. doi: 10.1523/JNEUROSCI.4950-12.2013.

8.

Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2.

Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS, Sancar A.

Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12114-9.

9.

Postnatal constant light compensates Cryptochrome1 and 2 double deficiency for disruption of circadian behavioral rhythms in mice under constant dark.

Ono D, Honma S, Honma K.

PLoS One. 2013 Nov 20;8(11):e80615. doi: 10.1371/journal.pone.0080615. eCollection 2013.

10.

Genetic interaction of Per1 and Dec1/2 in the regulation of circadian locomotor activity.

Bode B, Shahmoradi A, Taneja R, Rossner MJ, Oster H.

J Biol Rhythms. 2011 Dec;26(6):530-40. doi: 10.1177/0748730411419782. Erratum in: J Biol Rhythms. 2012 Apr;27(2):180. Taneja, Reshma [added].

PMID:
22215611
11.

Different mechanisms of adjustment to a change of the photoperiod in the suprachiasmatic and liver circadian clocks.

Sosniyenko S, Parkanová D, Illnerová H, Sládek M, Sumová A.

Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R959-71. doi: 10.1152/ajpregu.00561.2009. Epub 2010 Jan 13.

PMID:
20071612
12.

Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling.

Edwards MD, Brancaccio M, Chesham JE, Maywood ES, Hastings MH.

Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2732-7. doi: 10.1073/pnas.1519044113. Epub 2016 Feb 22.

14.

Regulation of prokineticin 2 expression by light and the circadian clock.

Cheng MY, Bittman EL, Hattar S, Zhou QY.

BMC Neurosci. 2005 Mar 11;6:17.

15.

Circadian regulation of food-anticipatory activity in molecular clock-deficient mice.

Takasu NN, Kurosawa G, Tokuda IT, Mochizuki A, Todo T, Nakamura W.

PLoS One. 2012;7(11):e48892. doi: 10.1371/journal.pone.0048892. Epub 2012 Nov 7.

16.

Chronotype and stability of spontaneous locomotor activity rhythm in BMAL1-deficient mice.

Pfeffer M, Korf HW, von Gall C.

Chronobiol Int. 2015 Feb;32(1):81-91. doi: 10.3109/07420528.2014.956218. Epub 2014 Sep 12.

PMID:
25216070
17.

Loss of circadian rhythm and light-induced suppression of pineal melatonin levels in Cry1 and Cry2 double-deficient mice.

Yamanaka Y, Suzuki Y, Todo T, Honma K, Honma S.

Genes Cells. 2010 Oct;15(10):1063-71. doi: 10.1111/j.1365-2443.2010.01443.x. Epub 2010 Sep 5.

18.

Lithium effects on circadian rhythms in fibroblasts and suprachiasmatic nucleus slices from Cry knockout mice.

Noguchi T, Lo K, Diemer T, Welsh DK.

Neurosci Lett. 2016 Apr 21;619:49-53. doi: 10.1016/j.neulet.2016.02.030. Epub 2016 Feb 27.

19.

Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal Arvicanthis ansorgei.

Caldelas I, Poirel VJ, Sicard B, Pévet P, Challet E.

Neuroscience. 2003;116(2):583-91.

PMID:
12559113
20.

Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus.

Ono D, Honma S, Honma K.

Nat Commun. 2013;4:1666. doi: 10.1038/ncomms2670.

PMID:
23575670

Supplemental Content

Support Center