Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 182

1.

Biological response to β-tricalcium phosphate/calcium sulfate synthetic graft material: an experimental study.

Leventis MD, Fairbairn P, Dontas I, Faratzis G, Valavanis KD, Khaldi L, Kostakis G, Eleftheriadis E.

Implant Dent. 2014 Feb;23(1):37-43. doi: 10.1097/ID.0000000000000030.

PMID:
24384743
2.

Comparative performance of three ceramic bone graft substitutes.

Hing KA, Wilson LF, Buckland T.

Spine J. 2007 Jul-Aug;7(4):475-90. Epub 2007 Jan 24.

PMID:
17630146
3.

Effect of autologous platelet-rich plasma in combination with a biphasic synthetic graft material on bone healing in critical-size cranial defects.

Faratzis G, Leventis M, Chrysomali E, Khaldi L, Eleftheriadis A, Eleftheriadis I, Dontas I.

J Craniofac Surg. 2012 Sep;23(5):1318-23. doi: 10.1097/SCS.0b013e31825c76e5.

PMID:
22976630
4.

Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects--A molecular-biological and histological study.

Kunert-Keil C, Scholz F, Gedrange T, Gredes T.

Ann Anat. 2015 May;199:79-84. doi: 10.1016/j.aanat.2013.12.001. Epub 2013 Dec 22.

PMID:
24439994
5.

Evaluation of moldable, in situ hardening calcium phosphate bone graft substitutes.

Schmidlin PR, Nicholls F, Kruse A, Zwahlen RA, Weber FE.

Clin Oral Implants Res. 2013 Feb;24(2):149-57. doi: 10.1111/j.1600-0501.2011.02315.x. Epub 2011 Nov 1.

PMID:
22092691
6.

Bone regeneration using beta-tricalcium phosphate in a calcium sulfate matrix.

Podaropoulos L, Veis AA, Papadimitriou S, Alexandridis C, Kalyvas D.

J Oral Implantol. 2009;35(1):28-36. doi: 10.1563/1548-1336-35.1.28.

PMID:
19288885
7.

Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits.

Yang C, Unursaikhan O, Lee JS, Jung UW, Kim CS, Choi SH.

J Biomed Mater Res B Appl Biomater. 2014 Jan;102(1):80-8. doi: 10.1002/jbm.b.32984. Epub 2013 Jul 13.

PMID:
23852942
8.

The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.

Wang C, Xue Y, Lin K, Lu J, Chang J, Sun J.

Acta Biomater. 2012 Jan;8(1):350-60. doi: 10.1016/j.actbio.2011.08.019. Epub 2011 Aug 28.

PMID:
21925627
9.

Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.

Rojbani H, Nyan M, Ohya K, Kasugai S.

J Biomed Mater Res A. 2011 Sep 15;98(4):488-98. doi: 10.1002/jbm.a.33117. Epub 2011 Jun 16.

PMID:
21681941
10.

Combination with allogenic bone reduces early absorption of beta-tricalcium phosphate (beta-TCP) and enhances the role as a bone regeneration scaffold. Experimental animal study in rat mandibular bone defects.

Hirota M, Matsui Y, Mizuki N, Kishi T, Watanuki K, Ozawa T, Fukui T, Shoji S, Adachi M, Monden Y, Iwai T, Tohnai I.

Dent Mater J. 2009 Mar;28(2):153-61.

11.

Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.

Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, Ning C.

Biomaterials. 2008 Jun;29(17):2588-96. doi: 10.1016/j.biomaterials.2008.03.013. Epub 2008 Apr 1.

PMID:
18378303
12.

Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects.

Plachokova AS, van den Dolder J, Stoelinga PJ, Jansen JA.

Clin Oral Implants Res. 2007 Apr;18(2):244-51.

PMID:
17348890
13.

Novel use of cranial epidural space in rabbits as an animal model to investigate bone volume augmentation potential of different bone graft substitutes.

Valdivia-Gandur I, Engelke W, Beltrán V, Borie E, Fuentes R, Manzanares-Céspedes MC.

Head Face Med. 2016 Dec 1;12(1):35.

14.
15.

Bone Regeneration Potential of Biphasic Nanocalcium Phosphate with High Hydroxyapatite/Tricalcium Phosphate Ratios in Rabbit Calvarial Defects.

Pripatnanont P, Praserttham P, Suttapreyasri S, Leepong N, Monmaturapoj N.

Int J Oral Maxillofac Implants. 2016 Mar-Apr;31(2):294-303. doi: 10.11607/jomi.4531.

PMID:
27004276
16.

Biodegradation process of alpha-TCP particles and new bone formation in a rabbit cranial defect model.

Kihara H, Shiota M, Yamashita Y, Kasugai S.

J Biomed Mater Res B Appl Biomater. 2006 Nov;79(2):284-91.

PMID:
16680680
17.

Comparative evaluation of three calcium phosphate synthetic block bone graft materials for bone regeneration in rabbit calvaria.

Hwang JW, Park JS, Lee JS, Jung UW, Kim CS, Cho KS, Lee YK, Choi SH.

J Biomed Mater Res B Appl Biomater. 2012 Nov;100(8):2044-52. doi: 10.1002/jbm.b.32768. Epub 2012 Aug 2.

PMID:
22865716
18.

Biomaterial resorption rate and healing site morphology of inorganic bovine bone and beta-tricalcium phosphate in the canine: a 24-month longitudinal histologic study and morphometric analysis.

Artzi Z, Weinreb M, Givol N, Rohrer MD, Nemcovsky CE, Prasad HS, Tal H.

Int J Oral Maxillofac Implants. 2004 May-Jun;19(3):357-68.

PMID:
15214219
19.
20.

Closure of critical sized defects with allogenic and alloplastic bone substitutes.

Clokie CM, Moghadam H, Jackson MT, Sandor GK.

J Craniofac Surg. 2002 Jan;13(1):111-21; discussion 122-3.

PMID:
11887007

Supplemental Content

Support Center