Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 73

1.

Enterococcus faecalis reconfigures its transcriptional regulatory network activation at different copper levels.

Latorre M, Galloway-Peña J, Roh JH, Budinich M, Reyes-Jara A, Murray BE, Maass A, González M.

Metallomics. 2014 Mar;6(3):572-81. doi: 10.1039/c3mt00288h. Epub 2014 Jan 2.

2.

Interplay between copper and zinc homeostasis through the transcriptional regulator Zur in Enterococcus faecalis.

Latorre M, Low M, Gárate E, Reyes-Jara A, Murray BE, Cambiazo V, González M.

Metallomics. 2015 Jul;7(7):1137-45. doi: 10.1039/c5mt00043b. Epub 2015 Apr 23.

PMID:
25906431
3.

Transcriptomic response of Enterococcus faecalis to iron excess.

López G, Latorre M, Reyes-Jara A, Cambiazo V, González M.

Biometals. 2012 Aug;25(4):737-47. doi: 10.1007/s10534-012-9539-5. Epub 2012 Mar 24.

PMID:
22447126
4.

Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure.

Reyes-Jara A, Latorre M, López G, Bourgogne A, Murray BE, Cambiazo V, González M.

Biometals. 2010 Dec;23(6):1105-12. doi: 10.1007/s10534-010-9356-7. Epub 2010 Jun 25.

PMID:
20577782
5.

CutC is induced late during copper exposure and can modify intracellular copper content in Enterococcus faecalis.

Latorre M, Olivares F, Reyes-Jara A, López G, González M.

Biochem Biophys Res Commun. 2011 Mar 25;406(4):633-7. doi: 10.1016/j.bbrc.2011.02.109.

PMID:
21362400
6.
7.

Impact of manganese, copper and zinc ions on the transcriptome of the nosocomial pathogen Enterococcus faecalis V583.

Abrantes MC, Lopes Mde F, Kok J.

PLoS One. 2011;6(10):e26519. doi: 10.1371/journal.pone.0026519. Epub 2011 Oct 28.

8.

Development of a genomic site for gene integration and expression in Enterococcus faecalis.

Debroy S, van der Hoeven R, Singh KV, Gao P, Harvey BR, Murray BE, Garsin DA.

J Microbiol Methods. 2012 Jul;90(1):1-8. doi: 10.1016/j.mimet.2012.04.011. Epub 2012 Apr 18.

9.

Reciprocal regulation of cephalosporin resistance in Enterococcus faecalis.

Kristich CJ, Little JL, Hall CL, Hoff JS.

MBio. 2011 Nov 1;2(6):e00199-11. doi: 10.1128/mBio.00199-11. Print 2011.

10.

Expression of the agmatine deiminase pathway in Enterococcus faecalis is activated by the AguR regulator and repressed by CcpA and PTS(Man) systems.

Suárez C, Espariz M, Blancato VS, Magni C.

PLoS One. 2013 Oct 14;8(10):e76170. doi: 10.1371/journal.pone.0076170. eCollection 2013.

11.

Transcriptomic response of Enterococcus faecalis V583 to low hydrogen peroxide levels.

Yan X, Budin-Verneuil A, Verneuil N, Gilmore MS, Artigaud S, Auffray Y, Pichereau V.

Curr Microbiol. 2015 Feb;70(2):156-68. doi: 10.1007/s00284-014-0691-8. Epub 2014 Sep 23.

PMID:
25245959
12.

A Rex family transcriptional repressor influences H2O2 accumulation by Enterococcus faecalis.

Vesić D, Kristich CJ.

J Bacteriol. 2013 Apr;195(8):1815-24. doi: 10.1128/JB.02135-12. Epub 2013 Feb 15.

13.

Glycolipids are involved in biofilm accumulation and prolonged bacteraemia in Enterococcus faecalis.

Theilacker C, Sanchez-Carballo P, Toma I, Fabretti F, Sava I, Kropec A, Holst O, Huebner J.

Mol Microbiol. 2009 Feb;71(4):1055-69. doi: 10.1111/j.1365-2958.2009.06587.x.

14.

Relationships between oxidative stress response and virulence in Enterococcus faecalis.

Riboulet E, Verneuil N, La Carbona S, Sauvageot N, Auffray Y, Hartke A, Giard JC.

J Mol Microbiol Biotechnol. 2007;13(1-3):140-6. Review.

PMID:
17693721
16.

Sub-lethal stress effects on virulence gene expression in Enterococcus faecalis.

Lenz CA, Hew Ferstl CM, Vogel RF.

Food Microbiol. 2010 May;27(3):317-26. doi: 10.1016/j.fm.2009.11.008. Epub 2009 Nov 10.

PMID:
20227595
17.

Transcriptional response of Enterococcus faecalis V583 to erythromycin.

Aakra A, Vebø H, Snipen L, Hirt H, Aastveit A, Kapur V, Dunny G, Murray BE, Nes IF.

Antimicrob Agents Chemother. 2005 Jun;49(6):2246-59. Erratum in: Antimicrob Agents Chemother. 2005 Sep;49(9):3989. Murray, Barbara [corrected to Murray, Barbara E].

18.

Determination of Enterococcus faecalis groESL full-length sequence and application for species identification.

Teng LJ, Hsueh PR, Wang YH, Lin HM, Luh KT, Ho SW.

J Clin Microbiol. 2001 Sep;39(9):3326-31.

19.

A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin.

Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T, Wang D, Wang Z, Shen Y, Li Y, Feßler AT, Wu C, Yu H, Deng X, Xia X, Shen J.

J Antimicrob Chemother. 2015 Aug;70(8):2182-90. doi: 10.1093/jac/dkv116. Epub 2015 May 14.

PMID:
25977397
20.

Molecular characterization of Enterococcus faecalis two-component signal transduction pathways related to environmental stresses.

Le Breton Y, Boël G, Benachour A, Prévost H, Auffray Y, Rincé A.

Environ Microbiol. 2003 May;5(5):329-37.

PMID:
12713459

Supplemental Content

Support Center