Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes.

Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL.

Nano Lett. 2014 Feb 12;14(2):731-6. doi: 10.1021/nl404008e. Epub 2014 Jan 7.

PMID:
24382331
2.

Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.

Lv Q, Wang S, Sun H, Luo J, Xiao J, Xiao J, Xiao F, Wang S.

Nano Lett. 2016 Jan 13;16(1):40-7. doi: 10.1021/acs.nanolett.5b02489. Epub 2015 Dec 1.

PMID:
26599168
3.

Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors.

Sundriyal P, Bhattacharya S.

ACS Appl Mater Interfaces. 2017 Nov 8;9(44):38507-38521. doi: 10.1021/acsami.7b11262. Epub 2017 Oct 24.

PMID:
28991438
4.

Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes.

Tang P, Han L, Zhang L.

ACS Appl Mater Interfaces. 2014 Jul 9;6(13):10506-15. doi: 10.1021/am5021028. Epub 2014 Jun 18.

PMID:
24905133
5.

Layered-MnO₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor.

Liu Y, Miao X, Fang J, Zhang X, Chen S, Li W, Feng W, Chen Y, Wang W, Zhang Y.

ACS Appl Mater Interfaces. 2016 Mar 2;8(8):5251-60. doi: 10.1021/acsami.5b10649. Epub 2016 Feb 19.

PMID:
26842681
6.

High-Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Formed Na0.5 MnO2 Nanosheet Assembled Nanowall Arrays.

Jabeen N, Hussain A, Xia Q, Sun S, Zhu J, Xia H.

Adv Mater. 2017 Aug;29(32). doi: 10.1002/adma.201700804. Epub 2017 Jun 22.

PMID:
28639392
7.

Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors.

Tao J, Liu N, Li L, Su J, Gao Y.

Nanoscale. 2014 Mar 7;6(5):2922-8. doi: 10.1039/c3nr05845j. Epub 2014 Jan 30.

PMID:
24477696
8.

Assembly of flexible CoMoO4@NiMoO4·xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors.

Wang J, Zhang L, Liu X, Zhang X, Tian Y, Liu X, Zhao J, Li Y.

Sci Rep. 2017 Jan 20;7:41088. doi: 10.1038/srep41088.

9.

Hierarchical Fe₃O₄@Fe₂O₃ Core-Shell Nanorod Arrays as High-Performance Anodes for Asymmetric Supercapacitors.

Tang X, Jia R, Zhai T, Xia H.

ACS Appl Mater Interfaces. 2015 Dec 16;7(49):27518-25. doi: 10.1021/acsami.5b09766. Epub 2015 Dec 3.

PMID:
26593683
10.

High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode.

Lu X, Yu M, Zhai T, Wang G, Xie S, Liu T, Liang C, Tong Y, Li Y.

Nano Lett. 2013 Jun 12;13(6):2628-33. doi: 10.1021/nl400760a. Epub 2013 May 3.

PMID:
23634667
11.

Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel.

Gund GS, Dubal DP, Chodankar NR, Cho JY, Gomez-Romero P, Park C, Lokhande CD.

Sci Rep. 2015 Jul 24;5:12454. doi: 10.1038/srep12454.

12.

Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics.

Chen W, He Y, Li X, Zhou J, Zhang Z, Zhao C, Gong C, Li S, Pan X, Xie E.

Nanoscale. 2013 Dec 7;5(23):11733-41. doi: 10.1039/c3nr03923d. Epub 2013 Oct 11.

PMID:
24114203
13.

Assembly of NiO/Ni(OH)2/PEDOT Nanocomposites on Contra Wires for Fiber-Shaped Flexible Asymmetric Supercapacitors.

Yang H, Xu H, Li M, Zhang L, Huang Y, Hu X.

ACS Appl Mater Interfaces. 2016 Jan 27;8(3):1774-9. doi: 10.1021/acsami.5b09526. Epub 2016 Jan 12.

PMID:
26709837
14.

Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system.

Wang X, Liu B, Liu R, Wang Q, Hou X, Chen D, Wang R, Shen G.

Angew Chem Int Ed Engl. 2014 Feb 10;53(7):1849-53. doi: 10.1002/anie.201307581. Epub 2014 Jan 13.

PMID:
24505005
15.

Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.

Jin Y, Chen H, Chen M, Liu N, Li Q.

ACS Appl Mater Interfaces. 2013 Apr 24;5(8):3408-16. doi: 10.1021/am400457x. Epub 2013 Apr 5.

PMID:
23488813
16.
17.

A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes.

Jiang H, Li C, Sun T, Ma J.

Nanoscale. 2012 Feb 7;4(3):807-12. doi: 10.1039/c1nr11542a. Epub 2011 Dec 12.

PMID:
22159343
18.

All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.

Kang YJ, Chung H, Han CH, Kim W.

Nanotechnology. 2012 Feb 17;23(6):065401. doi: 10.1088/0957-4484/23/6/065401. Epub 2012 Jan 17. Erratum in: Nanotechnology. 2012 Jul 20;23(28):289501.

PMID:
22248712
19.

3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors.

Zhai T, Wang F, Yu M, Xie S, Liang C, Li C, Xiao F, Tang R, Wu Q, Lu X, Tong Y.

Nanoscale. 2013 Aug 7;5(15):6790-6. doi: 10.1039/c3nr01589k.

PMID:
23765341
20.

Wearable Solid-State Supercapacitors Operating at High Working Voltage with a Flexible Nanocomposite Electrode.

Li X, Wang J, Zhao Y, Ge F, Komarneni S, Cai Z.

ACS Appl Mater Interfaces. 2016 Oct 5;8(39):25905-25914. Epub 2016 Sep 26.

PMID:
27618744

Supplemental Content

Support Center