Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.

High-throughput sequencing reveals the disruption of methylation of imprinted gene in induced pluripotent stem cells.

Chang G, Gao S, Hou X, Xu Z, Liu Y, Kang L, Tao Y, Liu W, Huang B, Kou X, Chen J, An L, Miao K, Di K, Wang Z, Tan K, Cheng T, Cai T, Gao S, Tian J.

Cell Res. 2014 Mar;24(3):293-306. doi: 10.1038/cr.2013.173. Epub 2013 Dec 31.

2.

Identification of the new gene Zrsr1 to associate with the pluripotency state in induced pluripotent stem cells (iPSCs) using high throughput sequencing technology.

Gao S, Chang G, Tian J, Gao S, Cai T.

Genom Data. 2014 Apr 30;2:73-7. doi: 10.1016/j.gdata.2014.04.008. eCollection 2014 Dec.

3.

Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency.

Sridharan R, Gonzales-Cope M, Chronis C, Bonora G, McKee R, Huang C, Patel S, Lopez D, Mishra N, Pellegrini M, Carey M, Garcia BA, Plath K.

Nat Cell Biol. 2013 Jul;15(7):872-82. doi: 10.1038/ncb2768. Epub 2013 Jun 9.

4.

Nuclear transcriptome profiling of induced pluripotent stem cells and embryonic stem cells identify non-coding loci resistant to reprogramming.

Fort A, Yamada D, Hashimoto K, Koseki H, Carninci P.

Cell Cycle. 2015;14(8):1148-55. doi: 10.4161/15384101.2014.988031.

5.

Residual expression of reprogramming factors affects the transcriptional program and epigenetic signatures of induced pluripotent stem cells.

Sommer CA, Christodoulou C, Gianotti-Sommer A, Shen SS, Sailaja BS, Hezroni H, Spira A, Meshorer E, Kotton DN, Mostoslavsky G.

PLoS One. 2012;7(12):e51711. doi: 10.1371/journal.pone.0051711. Epub 2012 Dec 14.

6.

The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.

Mansour AA, Gafni O, Weinberger L, Zviran A, Ayyash M, Rais Y, Krupalnik V, Zerbib M, Amann-Zalcenstein D, Maza I, Geula S, Viukov S, Holtzman L, Pribluda A, Canaani E, Horn-Saban S, Amit I, Novershtern N, Hanna JH.

Nature. 2012 Aug 16;488(7411):409-13. doi: 10.1038/nature11272.

PMID:
22801502
7.

The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells.

Brix J, Zhou Y, Luo Y.

J Genet Genomics. 2015 Dec 20;42(12):661-70. doi: 10.1016/j.jgg.2015.10.001. Epub 2015 Oct 23. Review.

PMID:
26743984
8.

Concise review: Induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart?

Bilic J, Izpisua Belmonte JC.

Stem Cells. 2012 Jan;30(1):33-41. doi: 10.1002/stem.700. Review.

9.

Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells.

Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K.

Nature. 2010 May 13;465(7295):175-81. doi: 10.1038/nature09017. Epub 2010 Apr 25.

10.

H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs.

Chen J, Liu H, Liu J, Qi J, Wei B, Yang J, Liang H, Chen Y, Chen J, Wu Y, Guo L, Zhu J, Zhao X, Peng T, Zhang Y, Chen S, Li X, Li D, Wang T, Pei D.

Nat Genet. 2013 Jan;45(1):34-42. doi: 10.1038/ng.2491. Epub 2012 Dec 2.

PMID:
23202127
11.

Conversion of genomic imprinting by reprogramming and redifferentiation.

Kim MJ, Choi HW, Jang HJ, Chung HM, Arauzo-Bravo MJ, Schöler HR, Do JT.

J Cell Sci. 2013 Jun 1;126(Pt 11):2516-24. doi: 10.1242/jcs.122754. Epub 2013 Mar 22.

12.

Global epigenetic changes during somatic cell reprogramming to iPS cells.

Mattout A, Biran A, Meshorer E.

J Mol Cell Biol. 2011 Dec;3(6):341-50. doi: 10.1093/jmcb/mjr028. Epub 2011 Nov 1.

PMID:
22044880
13.

Preferential gene expression and epigenetic memory of induced pluripotent stem cells derived from mouse pancreas.

Nukaya D, Minami K, Hoshikawa R, Yokoi N, Seino S.

Genes Cells. 2015 May;20(5):367-81. doi: 10.1111/gtc.12227. Epub 2015 Feb 27.

14.

Epigenetic memory in induced pluripotent stem cells.

Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ.

Nature. 2010 Sep 16;467(7313):285-90. doi: 10.1038/nature09342.

15.

Generation of mice derived from induced pluripotent stem cells.

Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Martin G, Kupriyanov S, Baldwin KK.

J Vis Exp. 2012 Nov 29;(69):e4003. doi: 10.3791/4003.

16.

An integrative analysis of reprogramming in human isogenic system identified a clone selection criterion.

Shutova MV, Surdina AV, Ischenko DS, Naumov VA, Bogomazova AN, Vassina EM, Alekseev DG, Lagarkova MA, Kiselev SL.

Cell Cycle. 2016;15(7):986-97. doi: 10.1080/15384101.2016.1152425.

17.

Comparative gene expression signature of pig, human and mouse induced pluripotent stem cell lines reveals insight into pig pluripotency gene networks.

Liu Y, Ma Y, Yang JY, Cheng D, Liu X, Ma X, West FD, Wang H.

Stem Cell Rev. 2014 Apr;10(2):162-76. doi: 10.1007/s12015-013-9485-9.

PMID:
24338594
18.

Analysis of human and mouse reprogramming of somatic cells to induced pluripotent stem cells. What is in the plate?

Boué S, Paramonov I, Barrero MJ, Izpisúa Belmonte JC.

PLoS One. 2010 Sep 17;5(9). pii: e12664. doi: 10.1371/journal.pone.0012664.

19.

Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells.

Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O'Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR.

Nature. 2011 Mar 3;471(7336):68-73. doi: 10.1038/nature09798. Epub 2011 Feb 2. Erratum in: Nature. 2014 Oct 2;514(7520):126.

20.

Higher methylation in genomic DNA indicates incomplete reprogramming in induced pluripotent stem cells.

Zhou W, Wang K, Ruan W, Bo Z, Liu L, Cao Z, Chai L, Cao G.

Cell Reprogram. 2013 Feb;15(1):92-9. doi: 10.1089/cell.2012.0043.

Supplemental Content

Support Center