Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Kinect technology for hand tracking control of surgical robots: technical and surgical skill comparison to current robotic masters.

Kim Y, Leonard S, Shademan A, Krieger A, Kim PC.

Surg Endosc. 2014 Jun;28(6):1993-2000. doi: 10.1007/s00464-013-3383-8. Epub 2014 Jan 1.

PMID:
24380997
2.

A development of assistant surgical robot system based on surgical-operation-by-wire and hands-on-throttle-and-stick.

Kim M, Lee C, Park WJ, Suh YS, Yang HK, Kim HJ, Kim S.

Biomed Eng Online. 2016 May 20;15(1):58. doi: 10.1186/s12938-016-0189-7.

3.

Robotic-assisted minimally invasive surgery for gynecologic and urologic oncology: an evidence-based analysis.

Health Quality Ontario.

Ont Health Technol Assess Ser. 2010;10(27):1-118. Epub 2010 Dec 1.

4.

Cadaveric feasibility study of da Vinci Si-assisted cochlear implant with augmented visual navigation for otologic surgery.

Liu WP, Azizian M, Sorger J, Taylor RH, Reilly BK, Cleary K, Preciado D.

JAMA Otolaryngol Head Neck Surg. 2014 Mar;140(3):208-14. doi: 10.1001/jamaoto.2013.6443.

PMID:
24457635
5.

Technical review of the da Vinci surgical telemanipulator.

Freschi C, Ferrari V, Melfi F, Ferrari M, Mosca F, Cuschieri A.

Int J Med Robot. 2013 Dec;9(4):396-406. doi: 10.1002/rcs.1468. Epub 2012 Nov 20.

PMID:
23166047
6.

Output control of da Vinci surgical system's surgical graspers.

Johnson PJ, Schmidt DE, Duvvuri U.

J Surg Res. 2014 Jan;186(1):56-62. doi: 10.1016/j.jss.2013.07.032. Epub 2013 Aug 8.

PMID:
23968806
7.

Impact of IQ, computer-gaming skills, general dexterity, and laparoscopic experience on performance with the da Vinci surgical system.

Hagen ME, Wagner OJ, Inan I, Morel P.

Int J Med Robot. 2009 Sep;5(3):327-31. doi: 10.1002/rcs.264.

PMID:
19455549
8.

Comparison of two simulation systems to support robotic-assisted surgical training: a pilot study (Swine model).

Whitehurst SV, Lockrow EG, Lendvay TS, Propst AM, Dunlow SG, Rosemeyer CJ, Gobern JM, White LW, Skinner A, Buller JL.

J Minim Invasive Gynecol. 2015 Mar-Apr;22(3):483-8. doi: 10.1016/j.jmig.2014.12.160. Epub 2014 Dec 24.

PMID:
25543068
9.

Robot-assisted anterior lumbar interbody fusion in a Swine model in vivo test of the da vinci surgical-assisted spinal surgery system.

Yang MS, Yoon DH, Kim KN, Kim H, Yang JW, Yi S, Lee JY, Jung WJ, Rha KH, Ha Y.

Spine (Phila Pa 1976). 2011 Jan 15;36(2):E139-43. doi: 10.1097/BRS.0b013e3181d40ba3.

PMID:
20948463
10.

The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report.

Beutler WJ, Peppelman WC Jr, DiMarco LA.

Spine (Phila Pa 1976). 2013 Feb 15;38(4):356-63. doi: 10.1097/BRS.0b013e31826b3d72.

PMID:
22842558
11.

[Haptic tracking control for minimally invasive robotic surgery].

Xu Z, Song C, Wu W.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2012 Jun;29(3):407-10. Chinese.

PMID:
22826928
12.

Robotic laparoscopic distal gastrectomy: a comparison of the da Vinci and Zeus systems.

Kakeji Y, Konishi K, Ieiri S, Yasunaga T, Nakamoto M, Tanoue K, Baba H, Maehara Y, Hashizume M.

Int J Med Robot. 2006 Dec;2(4):299-304.

PMID:
17520647
13.

Training in robotic surgery using the da Vinci® surgical system for left pneumonectomy and lymph node dissection in an animal model.

Kajiwara N, Kakihana M, Usuda J, Uchida O, Ohira T, Kawate N, Ikeda N.

Ann Thorac Cardiovasc Surg. 2011;17(5):446-53. Epub 2011 Jul 13.

14.

Robotic general surgery: current practice, evidence, and perspective.

Jung M, Morel P, Buehler L, Buchs NC, Hagen ME.

Langenbecks Arch Surg. 2015 Apr;400(3):283-92. doi: 10.1007/s00423-015-1278-y. Epub 2015 Feb 18. Review.

PMID:
25854502
15.

Design of an integrated master-slave robotic system for minimally invasive surgery.

Li J, Zhou N, Wang S, Gao Y, Liu D.

Int J Med Robot. 2012 Mar;8(1):77-84. doi: 10.1002/rcs.439. Epub 2011 Oct 7.

PMID:
21984343
16.

An all-joint-control master device for single-port laparoscopic surgery robots.

Shim S, Kang T, Ji D, Choi H, Joung S, Hong J.

Int J Comput Assist Radiol Surg. 2016 Aug;11(8):1547-57. doi: 10.1007/s11548-016-1352-0. Epub 2016 Feb 12.

PMID:
26872809
17.

Direct manipulation of tool-like masters for controlling a master-slave surgical robotic system.

Zhang L, Zhou N, Wang S.

Int J Med Robot. 2014 Dec;10(4):427-37. doi: 10.1002/rcs.1545. Epub 2013 Oct 11.

PMID:
24127347
18.

First experiences with the da Vinci operating robot in thoracic surgery.

Bodner J, Wykypiel H, Wetscher G, Schmid T.

Eur J Cardiothorac Surg. 2004 May;25(5):844-51.

PMID:
15082292
19.

Early experience with telemanipulative robot-assisted laparoscopic cholecystectomy using da Vinci.

Kim VB, Chapman WH, Albrecht RJ, Bailey BM, Young JA, Nifong LW, Chitwood WR Jr.

Surg Laparosc Endosc Percutan Tech. 2002 Feb;12(1):33-40. Review.

PMID:
12008760
20.

Docking of the da Vinci Si Surgical System® with single-site technology.

Iranmanesh P, Morel P, Buchs NC, Pugin F, Volonte F, Kreaden US, Hagen ME.

Int J Med Robot. 2013 Mar;9(1):12-6. doi: 10.1002/rcs.1481. Epub 2013 Jan 25.

PMID:
23348914

Supplemental Content

Support Center