Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Promoter activity dynamics in the lag phase of Escherichia coli.

Madar D, Dekel E, Bren A, Zimmer A, Porat Z, Alon U.

BMC Syst Biol. 2013 Dec 30;7:136. doi: 10.1186/1752-0509-7-136.

2.

Optimization and control in bacterial lag phase.

Schultz D, Kishony R.

BMC Biol. 2013 Dec 16;11:120. doi: 10.1186/1741-7007-11-120.

3.

Cell division in Escherichia coli cultures monitored at single cell resolution.

Roostalu J, Jõers A, Luidalepp H, Kaldalu N, Tenson T.

BMC Microbiol. 2008 Apr 23;8:68. doi: 10.1186/1471-2180-8-68.

4.

Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity.

Gefen O, Fridman O, Ronin I, Balaban NQ.

Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):556-61. doi: 10.1073/pnas.1314114111.

5.

Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase.

Pin C, Rolfe MD, Muñoz-Cuevas M, Hinton JC, Peck MW, Walton NJ, Baranyi J.

BMC Syst Biol. 2009 Nov 16;3:108. doi: 10.1186/1752-0509-3-108.

6.

A rapid reporter system using GFP as a reporter protein for identification and screening of synthetic stationary-phase promoters in Escherichia coli.

Miksch G, Bettenworth F, Friehs K, Flaschel E, Saalbach A, Nattkemper TW.

Appl Microbiol Biotechnol. 2006 Mar;70(2):229-36.

PMID:
16012833
7.
8.

Classification and strength measurement of stationary-phase promoters by use of a newly developed promoter cloning vector.

Shimada T, Makinoshima H, Ogawa Y, Miki T, Maeda M, Ishihama A.

J Bacteriol. 2004 Nov;186(21):7112-22.

9.

Growth phase-dependent modification of RNA polymerase in Escherichia coli.

Ozaki M, Wada A, Fujita N, Ishihama A.

Mol Gen Genet. 1991 Nov;230(1-2):17-23.

PMID:
1745227
10.

Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition.

Prats C, Giró A, Ferrer J, López D, Vives-Rego J.

J Theor Biol. 2008 May 7;252(1):56-68. doi: 10.1016/j.jtbi.2008.01.019.

PMID:
18329047
12.

In silico evolution of diauxic growth.

Chu DF.

BMC Evol Biol. 2015 Sep 29;15:211. doi: 10.1186/s12862-015-0492-0.

13.

Responses of Mycobacterium tuberculosis hemoglobin promoters to in vitro and in vivo growth conditions.

Pawaria S, Lama A, Raje M, Dikshit KL.

Appl Environ Microbiol. 2008 Jun;74(11):3512-22. doi: 10.1128/AEM.02663-07.

14.
17.

Depletion of the non-coding regulatory 6S RNA in E. coli causes a surprising reduction in the expression of the translation machinery.

Neusser T, Polen T, Geissen R, Wagner R.

BMC Genomics. 2010 Mar 11;11:165. doi: 10.1186/1471-2164-11-165.

18.
19.

[Features of functioning of the promoter of microcin C51 promoter under various conditions of Escherichia coli cell growth].

Veselovskiĭ AM, Fomenko DE, Metlitskaia AZ, Lipasova VA, Khmel' IA.

Genetika. 2001 Aug;37(8):1055-62. Russian.

PMID:
11642104
20.

Induction of a global stress response during the first step of Escherichia coli plate growth.

Cuny C, Lesbats M, Dukan S.

Appl Environ Microbiol. 2007 Feb;73(3):885-9.

Supplemental Content

Support Center