Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 175

1.

Potential impacts of global warming on the diversity and distribution of stream insects in South Korea.

Li F, Kwon YS, Bae MJ, Chung N, Kwon TS, Park YS.

Conserv Biol. 2014 Apr;28(2):498-508. doi: 10.1111/cobi.12219.

PMID:
24372690
2.

Climate heterogeneity modulates impact of warming on tropical insects.

Bonebrake TC, Deutsch CA.

Ecology. 2012 Mar;93(3):449-55.

PMID:
22624199
3.

Effect of land use on the composition, diversity and abundance of insects drifting in neotropical streams.

Gimenez BC, Lansac-Tôha FA, Higuti J.

Braz J Biol. 2015 Nov;75(4 Suppl 1):S52-9. doi: 10.1590/1519-6984.03914.

4.

Salinized rivers: degraded systems or new habitats for salt-tolerant faunas?

Kefford BJ, Buchwalter D, Cañedo-Argüelles M, Davis J, Duncan RP, Hoffmann A, Thompson R.

Biol Lett. 2016 Mar;12(3):20151072. doi: 10.1098/rsbl.2015.1072. Review.

5.
6.

The interactive effects of climate change, riparian management, and a nonnative predator on stream-rearing salmon.

Lawrence DJ, Stewart-Koster B, Olden JD, Ruesch AS, Torgersen CE, Lawler JJ, Butcher DP, Crown JK.

Ecol Appl. 2014 Jun;24(4):895-912.

PMID:
24988784
7.

Changes in butterfly abundance in response to global warming and reforestation.

Kwon TS, Kim SS, Chun JH, Byun BK, Lim JH, Shin JH.

Environ Entomol. 2010 Apr;39(2):337-45. doi: 10.1603/EN09184.

PMID:
20388261
8.
9.
10.

Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms.

Verberk WC, Durance I, Vaughan IP, Ormerod SJ.

Glob Chang Biol. 2016 May;22(5):1769-78. doi: 10.1111/gcb.13240.

11.

Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, USA.

Lyons J, Stewart JS, Mitro M.

J Fish Biol. 2010 Nov;77(8):1867-98. doi: 10.1111/j.1095-8649.2010.02763.x.

PMID:
21078096
12.
13.

Diet and trophic groups of an aquatic insect community in a tropical stream.

Motta RL, Uieda VS.

Braz J Biol. 2004 Nov;64(4):809-17.

14.

Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.

García-Robledo C, Kuprewicz EK, Staines CL, Erwin TL, Kress WJ.

Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):680-5. doi: 10.1073/pnas.1507681113.

15.

Modelling Vulnerability and Range Shifts in Ant Communities Responding to Future Global Warming in Temperate Forests.

Kwon TS, Li F, Kim SS, Chun JH, Park YS.

PLoS One. 2016 Aug 9;11(8):e0159795. doi: 10.1371/journal.pone.0159795.

16.

Continental drift and climate change drive instability in insect assemblages.

Li F, Tierno de Figueroa JM, Lek S, Park YS.

Sci Rep. 2015 Jun 17;5:11343. doi: 10.1038/srep11343.

17.

Global warming and extinctions of endemic species from biodiversity hotspots.

Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah L.

Conserv Biol. 2006 Apr;20(2):538-48.

PMID:
16903114
18.

Climatic and Catchment-Scale Predictors of Chinese Stream Insect Richness Differ between Taxonomic Groups.

Tonkin JD, Shah DN, Kuemmerlen M, Li F, Cai Q, Haase P, Jähnig SC.

PLoS One. 2015 Apr 24;10(4):e0123250. doi: 10.1371/journal.pone.0123250.

19.

Biodiversity and agro-ecology in field margins.

De Cauwer B, Reheul D, Nijs I, Milbau A.

Commun Agric Appl Biol Sci. 2005;70(1):17-49.

PMID:
16363358
20.

Contrasting habitat associations of imperilled endemic stream fishes from a global biodiversity hot spot.

Chakona A, Swartz ER.

BMC Ecol. 2012 Sep 26;12:19. doi: 10.1186/1472-6785-12-19.

Supplemental Content

Support Center