Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 178

1.

A single CMT methyltransferase homolog is involved in CHG DNA methylation and development of Physcomitrella patens.

Noy-Malka C, Yaari R, Itzhaki R, Mosquna A, Auerbach Gershovitz N, Katz A, Ohad N.

Plant Mol Biol. 2014 Apr;84(6):719-35. doi: 10.1007/s11103-013-0165-6. Epub 2013 Dec 27.

PMID:
24370935
2.

The PpCMT chromomethylase affects cell growth and interacts with the homolog of LIKE HETEROCHROMATIN PROTEIN 1 in the moss Physcomitrella patens.

Dangwal M, Kapoor S, Kapoor M.

Plant J. 2014 Feb;77(4):589-603. doi: 10.1111/tpj.12406. Epub 2014 Jan 21.

3.

DNA METHYLTRANSFERASE 1 is involved in (m)CG and (m)CCG DNA methylation and is essential for sporophyte development in Physcomitrella patens.

Yaari R, Noy-Malka C, Wiedemann G, Auerbach Gershovitz N, Reski R, Katz A, Ohad N.

Plant Mol Biol. 2015 Jul;88(4-5):387-400. doi: 10.1007/s11103-015-0328-8. Epub 2015 May 6.

PMID:
25944663
4.

Developmental- and Tissue-Specific Expression of NbCMT3-2 Encoding a Chromomethylase in Nicotiana benthamiana.

Lin YT, Wei HM, Lu HY, Lee YI, Fu SF.

Plant Cell Physiol. 2015 Jun;56(6):1124-43. doi: 10.1093/pcp/pcv036. Epub 2015 Mar 5.

PMID:
25745030
5.

A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes S-methylation of thiols and has a role in detoxification.

Zhao N, Ferrer JL, Moon HS, Kapteyn J, Zhuang X, Hasebe M, Stewart CN Jr, Gang DR, Chen F.

Phytochemistry. 2012 Sep;81:31-41. doi: 10.1016/j.phytochem.2012.06.011. Epub 2012 Jul 13.

PMID:
22795762
6.

ARABIDILLO gene homologues in basal land plants: species-specific gene duplication and likely functional redundancy.

Moody LA, Saidi Y, Smiles EJ, Bradshaw SJ, Meddings M, Winn PJ, Coates JC.

Planta. 2012 Dec;236(6):1927-41. doi: 10.1007/s00425-012-1742-7. Epub 2012 Sep 4.

PMID:
22945313
7.

Role of DNA methylation in growth and differentiation in Physcomitrella patens and characterization of cytosine DNA methyltransferases.

Malik G, Dangwal M, Kapoor S, Kapoor M.

FEBS J. 2012 Nov;279(21):4081-94. doi: 10.1111/febs.12002. Epub 2012 Oct 1.

8.

Phosphatase and Tensin Homolog Is a Growth Repressor of Both Rhizoid and Gametophore Development in the Moss Physcomitrella patens.

Saavedra L, Catarino R, Heinz T, Heilmann I, Bezanilla M, Malhó R.

Plant Physiol. 2015 Dec;169(4):2572-86. doi: 10.1104/pp.15.01197. Epub 2015 Oct 13.

9.

Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution.

Mosquna A, Katz A, Decker EL, Rensing SA, Reski R, Ohad N.

Development. 2009 Jul;136(14):2433-44. doi: 10.1242/dev.035048.

10.

Genome-wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens.

Koduri PK, Gordon GS, Barker EI, Colpitts CC, Ashton NW, Suh DY.

Plant Mol Biol. 2010 Feb;72(3):247-63. doi: 10.1007/s11103-009-9565-z. Epub 2009 Oct 31.

PMID:
19876746
11.

Functional characterization of HY5 homolog genes involved in early light-signaling in Physcomitrella patens.

Yamawaki S, Yamashino T, Nakanishi H, Mizuno T.

Biosci Biotechnol Biochem. 2011;75(8):1533-9. Epub 2011 Aug 7.

12.

Loss of GH3 function does not affect phytochrome-mediated development in a moss, Physcomitrella patens.

Bierfreund NM, Tintelnot S, Reski R, Decker EL.

J Plant Physiol. 2004 Jul;161(7):823-35.

PMID:
15310072
13.

Identification of a 4-coumarate:CoA ligase gene family in the moss, Physcomitrella patens.

Silber MV, Meimberg H, Ebel J.

Phytochemistry. 2008 Oct;69(13):2449-56. doi: 10.1016/j.phytochem.2008.06.014. Epub 2008 Aug 21.

PMID:
18722632
14.

Functional characterization of Nicotiana benthamiana chromomethylase 3 in developmental programs by virus-induced gene silencing.

Hou PQ, Lee YI, Hsu KT, Lin YT, Wu WZ, Lin JY, Nam TN, Fu SF.

Physiol Plant. 2014 Jan;150(1):119-32. doi: 10.1111/ppl.12071. Epub 2013 Jun 7.

PMID:
23683172
15.

The Polycomb group protein CLF emerges as a specific tri-methylase of H3K27 regulating gene expression and development in Physcomitrella patens.

Pereman I, Mosquna A, Katz A, Wiedemann G, Lang D, Decker EL, Tamada Y, Ishikawa T, Nishiyama T, Hasebe M, Reski R, Ohad N.

Biochim Biophys Acta. 2016 Jul;1859(7):860-70. doi: 10.1016/j.bbagrm.2016.05.004. Epub 2016 May 11.

PMID:
27179444
16.

Physcomitrella patens: a model to investigate the role of RAC/ROP GTPase signalling in tip growth.

Eklund DM, Svensson EM, Kost B.

J Exp Bot. 2010 Apr;61(7):1917-37. doi: 10.1093/jxb/erq080. Epub 2010 Apr 5.

PMID:
20368308
17.

Involvement of the CYP78A subfamily of cytochrome P450 monooxygenases in protonema growth and gametophore formation in the moss Physcomitrella patens.

Katsumata T, Fukazawa J, Magome H, Jikumaru Y, Kamiya Y, Natsume M, Kawaide H, Yamaguchi S.

Biosci Biotechnol Biochem. 2011;75(2):331-6.

18.

Comparative analysis of the SBP-box gene families in P. patens and seed plants.

Riese M, Höhmann S, Saedler H, Münster T, Huijser P.

Gene. 2007 Oct 15;401(1-2):28-37. Epub 2007 Jul 10.

PMID:
17689888
19.

A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution.

Okano Y, Aono N, Hiwatashi Y, Murata T, Nishiyama T, Ishikawa T, Kubo M, Hasebe M.

Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16321-6. doi: 10.1073/pnas.0906997106. Epub 2009 Sep 9.

20.

Telomere dynamics in the lower plant Physcomitrella patens.

Fojtová M, Sýkorová E, Najdekrová L, Polanská P, Zachová D, Vagnerová R, Angelis KJ, Fajkus J.

Plant Mol Biol. 2015 Apr;87(6):591-601. doi: 10.1007/s11103-015-0299-9. Epub 2015 Feb 21.

PMID:
25701469

Supplemental Content

Support Center