Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Proteomic changes in the base of chrysanthemum cuttings during adventitious root formation.

Liu R, Chen S, Jiang J, Zhu L, Zheng C, Han S, Gu J, Sun J, Li H, Wang H, Song A, Chen F.

BMC Genomics. 2013 Dec 26;14:919. doi: 10.1186/1471-2164-14-919.

2.

Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development.

Sorin C, Negroni L, Balliau T, Corti H, Jacquemot MP, Davanture M, Sandberg G, Zivy M, Bellini C.

Plant Physiol. 2006 Jan;140(1):349-64. Epub 2005 Dec 23.

3.

Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemum morifolium 'Jinba'.

Wang J, Wang H, Ding L, Song A, Shen F, Jiang J, Chen S, Chen F.

Plant Mol Biol. 2017 Apr;93(6):593-606. doi: 10.1007/s11103-017-0584-x. Epub 2017 Jan 20.

PMID:
28108965
4.

Chrysanthemum cutting productivity and rooting ability are improved by grafting.

Zhang J, Chen S, Liu R, Jiang J, Chen F, Fang W.

ScientificWorldJournal. 2013 Jun 25;2013:286328. doi: 10.1155/2013/286328. Print 2013.

5.

Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis.

Rasmussen A, Hosseini SA, Hajirezaei MR, Druege U, Geelen D.

J Exp Bot. 2015 Mar;66(5):1437-52. doi: 10.1093/jxb/eru499. Epub 2014 Dec 24.

6.

Transcriptome and proteome profiling of adventitious root development in hybrid larch (Larix kaempferi × Larix olgensis).

Han H, Sun X, Xie Y, Feng J, Zhang S.

BMC Plant Biol. 2014 Nov 26;14:305. doi: 10.1186/s12870-014-0305-4.

7.

Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings.

Agulló-Antón MÁ, Ferrández-Ayela A, Fernández-García N, Nicolás C, Albacete A, Pérez-Alfocea F, Sánchez-Bravo J, Pérez-Pérez JM, Acosta M.

Physiol Plant. 2014 Mar;150(3):446-62. doi: 10.1111/ppl.12114. Epub 2013 Oct 24.

PMID:
24117983
8.

Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light.

Klopotek Y, Haensch KT, Hause B, Hajirezaei MR, Druege U.

J Plant Physiol. 2010 May 1;167(7):547-54. doi: 10.1016/j.jplph.2009.11.008. Epub 2010 Jan 4.

PMID:
20047776
9.

Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.

Tombesi S, Palliotti A, Poni S, Farinelli D.

Front Plant Sci. 2015 Nov 6;6:973. doi: 10.3389/fpls.2015.00973. eCollection 2015.

10.

Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.).

Wei K, Wang LY, Wu LY, Zhang CC, Li HL, Tan LQ, Cao HL, Cheng H.

PLoS One. 2014 Sep 12;9(9):e107201. doi: 10.1371/journal.pone.0107201. eCollection 2014.

11.

Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated Eucalyptus globulus Labill mother plants.

Ruedell CM, de Almeida MR, Fett-Neto AG.

Plant Physiol Biochem. 2015 Dec;97:11-9. doi: 10.1016/j.plaphy.2015.09.005. Epub 2015 Sep 10.

PMID:
26397200
12.
13.

The GRAS gene family in pine: transcript expression patterns associated with the maturation-related decline of competence to form adventitious roots.

Abarca D, Pizarro A, Hernández I, Sánchez C, Solana SP, Del Amo A, Carneros E, Díaz-Sala C.

BMC Plant Biol. 2014 Dec 30;14:354. doi: 10.1186/s12870-014-0354-8.

15.

The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus.

Ramírez-Carvajal GA, Morse AM, Dervinis C, Davis JM.

Plant Physiol. 2009 Jun;150(2):759-71. doi: 10.1104/pp.109.137505. Epub 2009 Apr 24.

16.

Isolation of an alcohol dehydrogenase cDNA from and characterization of its expression in chrysanthemum under waterlogging.

Yin D, Ni D, Song L, Zhang Z.

Plant Sci. 2013 Nov;212:48-54. doi: 10.1016/j.plantsci.2013.05.017. Epub 2013 Jun 8.

PMID:
24094053
17.

Variation in tissue Na(+) content and the activity of SOS1 genes among two species and two related genera of Chrysanthemum.

Gao J, Sun J, Cao P, Ren L, Liu C, Chen S, Chen F, Jiang J.

BMC Plant Biol. 2016 Apr 21;16:98. doi: 10.1186/s12870-016-0781-9.

18.

Gene expression profiling during adventitious root formation in carnation stem cuttings.

Villacorta-Martín C, Sánchez-García AB, Villanova J, Cano A, van de Rhee M, de Haan J, Acosta M, Passarinho P, Pérez-Pérez JM.

BMC Genomics. 2015 Oct 14;16:789. doi: 10.1186/s12864-015-2003-5.

19.

Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism.

Ahkami AH, Lischewski S, Haensch KT, Porfirova S, Hofmann J, Rolletschek H, Melzer M, Franken P, Hause B, Druege U, Hajirezaei MR.

New Phytol. 2009;181(3):613-25. doi: 10.1111/j.1469-8137.2008.02704.x. Epub 2008 Dec 5.

20.

Gene expression profiling in juvenile and mature cuttings of Eucalyptus grandis reveals the importance of microtubule remodeling during adventitious root formation.

Abu-Abied M, Szwerdszarf D, Mordehaev I, Yaniv Y, Levinkron S, Rubinstein M, Riov J, Ophir R, Sadot E.

BMC Genomics. 2014 Sep 30;15:826. doi: 10.1186/1471-2164-15-826.

Supplemental Content

Support Center