Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.
2.

Conformational analyses of the reaction coordinate of glycosidases.

Davies GJ, Planas A, Rovira C.

Acc Chem Res. 2012 Feb 21;45(2):308-16. doi: 10.1021/ar2001765.

PMID:
21923088
3.

The conformational free energy landscape of beta-D-glucopyranose. Implications for substrate preactivation in beta-glucoside hydrolases.

Biarnés X, Ardèvol A, Planas A, Rovira C, Laio A, Parrinello M.

J Am Chem Soc. 2007 Sep 5;129(35):10686-93.

PMID:
17696342
4.

Assigning kinetic 3D-signatures to glycocodes.

Sattelle BM, Almond A.

Phys Chem Chem Phys. 2012 Apr 28;14(16):5843-8. doi: 10.1039/c2cp40071e.

PMID:
22415228
5.

Several transition states from (4)C(1) to skew conformations of beta-D-glucopyranose.

Kurihara Y, Ueda K.

Carbohydr Res. 2009 Nov 2;344(16):2266-9. doi: 10.1016/j.carres.2009.08.020.

PMID:
19766991
6.

Enzymatic Cleavage of Glycosidic Bonds: Strategies on How to Set Up and Control a QM/MM Metadynamics Simulation.

Raich L, Nin-Hill A, Ardèvol A, Rovira C.

Methods Enzymol. 2016;577:159-83. doi: 10.1016/bs.mie.2016.05.015.

PMID:
27498638
7.

Catalytic itinerary in 1,3-1,4-β-glucanase unraveled by QM/MM metadynamics. Charge is not yet fully developed at the oxocarbenium ion-like transition state.

Biarnés X, Ardèvol A, Iglesias-Fernández J, Planas A, Rovira C.

J Am Chem Soc. 2011 Dec 21;133(50):20301-9. doi: 10.1021/ja207113e.

PMID:
22044419
8.

Dissecting conformational contributions to glycosidase catalysis and inhibition.

Speciale G, Thompson AJ, Davies GJ, Williams SJ.

Curr Opin Struct Biol. 2014 Oct;28:1-13. doi: 10.1016/j.sbi.2014.06.003. Review.

9.

The conformational free-energy landscape of β-D-mannopyranose: evidence for a (1)S(5) → B(2,5) → (O)S(2) catalytic itinerary in β-mannosidases.

Ardèvol A, Biarnés X, Planas A, Rovira C.

J Am Chem Soc. 2010 Nov 17;132(45):16058-65. doi: 10.1021/ja105520h.

PMID:
20973526
10.

Pyranose ring transition state is derived from cellobiohydrolase I induced conformational stability and glycosidic bond polarization.

Barnett CB, Wilkinson KA, Naidoo KJ.

J Am Chem Soc. 2010 Sep 22;132(37):12800-3. doi: 10.1021/ja103766w.

PMID:
20795726
11.
12.

Kinetic characteristics of conformational changes in the hexopyranose rings.

Plazinski W, Drach M.

Carbohydr Res. 2015 Oct 30;416:41-50. doi: 10.1016/j.carres.2015.08.010.

PMID:
26343326
14.

Additive empirical force field for hexopyranose monosaccharides.

Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, Mackerell AD Jr.

J Comput Chem. 2008 Nov 30;29(15):2543-64. doi: 10.1002/jcc.21004.

15.

Restricted puckering of mineralized RNA-like riboses.

Casanovas J, Revilla-López G, Bertran O, Del Valle LJ, Turon P, Puiggalí J, Alemán C.

J Phys Chem B. 2014 May 15;118(19):5075-81. doi: 10.1021/jp501714q.

PMID:
24787993
16.

Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase.

Gaiser OJ, Piotukh K, Ponnuswamy MN, Planas A, Borriss R, Heinemann U.

J Mol Biol. 2006 Apr 7;357(4):1211-25.

PMID:
16483609
17.
18.

Crystal structure of the 270 kDa homotetrameric lignin-degrading enzyme pyranose 2-oxidase.

Hallberg BM, Leitner C, Haltrich D, Divne C.

J Mol Biol. 2004 Aug 13;341(3):781-96.

PMID:
15288786
19.

Dependence of pyranose ring puckering on anomeric configuration: methyl idopyranosides.

Sattelle BM, Bose-Basu B, Tessier M, Woods RJ, Serianni AS, Almond A.

J Phys Chem B. 2012 Jun 7;116(22):6380-6. doi: 10.1021/jp303183y.

20.

Structural analysis of monosaccharide recognition by rat liver mannose-binding protein.

Ng KK, Drickamer K, Weis WI.

J Biol Chem. 1996 Jan 12;271(2):663-74.

Supplemental Content

Support Center