Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Forced protein unfolding leads to highly elastic and tough protein hydrogels.

Fang J, Mehlich A, Koga N, Huang J, Koga R, Gao X, Hu C, Jin C, Rief M, Kast J, Baker D, Li H.

Nat Commun. 2013;4:2974. doi: 10.1038/ncomms3974.

2.

Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity.

Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP.

Nat Mater. 2013 Oct;12(10):932-7. doi: 10.1038/nmat3713.

PMID:
23892784
3.

Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels.

Zhong M, Liu XY, Shi FK, Zhang LQ, Wang XP, Cheetham AG, Cui H, Xie XM.

Soft Matter. 2015 Jun 7;11(21):4235-41. doi: 10.1039/c5sm00493d.

PMID:
25892460
4.

Highly stretchable and tough hydrogels.

Sun JY, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z.

Nature. 2012 Sep 6;489(7414):133-6. doi: 10.1038/nature11409.

5.

Multi-scale mechanical characterization of highly swollen photo-activated collagen hydrogels.

Tronci G, Grant CA, Thomson NH, Russell SJ, Wood DJ.

J R Soc Interface. 2015 Jan 6;12(102):20141079. doi: 10.1098/rsif.2014.1079.

6.

Tunable mechanical stability and deformation response of a resilin-based elastomer.

Li L, Teller S, Clifton RJ, Jia X, Kiick KL.

Biomacromolecules. 2011 Jun 13;12(6):2302-10. doi: 10.1021/bm200373p.

7.

Strengthening alginate/polyacrylamide hydrogels using various multivalent cations.

Yang CH, Wang MX, Haider H, Yang JH, Sun JY, Chen YM, Zhou J, Suo Z.

ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10418-22. doi: 10.1021/am403966x. Erratum in: ACS Appl Mater Interfaces. 2013 Dec 26;5(24):13484.

PMID:
24128011
8.

Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility.

Liu Y, Vrana NE, Cahill PA, McGuinness GB.

J Biomed Mater Res B Appl Biomater. 2009 Aug;90(2):492-502. doi: 10.1002/jbm.b.31310.

PMID:
19145629
9.

Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

Albanna MZ, Bou-Akl TH, Blowytsky O, Walters HL 3rd, Matthew HW.

J Mech Behav Biomed Mater. 2013 Apr;20:217-26. doi: 10.1016/j.jmbbm.2012.09.012.

PMID:
23465267
10.

Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.

Karimi A, Navidbakhsh M.

Biomed Tech (Berl). 2014 Dec;59(6):479-86. doi: 10.1515/bmt-2014-0028.

PMID:
24988278
11.

Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.

De France KJ, Chan KJ, Cranston ED, Hoare T.

Biomacromolecules. 2016 Feb 8;17(2):649-60. doi: 10.1021/acs.biomac.5b01598.

PMID:
26741744
12.

Influence of physical and mechanical properties of amphiphilic biosynthetic hydrogels on long-term cell viability.

Thankam FG, Muthu J.

J Mech Behav Biomed Mater. 2014 Jul;35:111-22. doi: 10.1016/j.jmbbm.2014.03.010.

PMID:
24762858
13.

PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering.

Rafat M, Li F, Fagerholm P, Lagali NS, Watsky MA, Munger R, Matsuura T, Griffith M.

Biomaterials. 2008 Oct;29(29):3960-72. doi: 10.1016/j.biomaterials.2008.06.017.

PMID:
18639928
14.

Fabrication of chitosan/poly(ε-caprolactone) composite hydrogels for tissue engineering applications.

Zhong X, Ji C, Chan AK, Kazarian SG, Ruys A, Dehghani F.

J Mater Sci Mater Med. 2011 Feb;22(2):279-88. doi: 10.1007/s10856-010-4194-2.

PMID:
21170732
15.

Silk protein-based hydrogels: Promising advanced materials for biomedical applications.

Kapoor S, Kundu SC.

Acta Biomater. 2016 Feb;31:17-32. doi: 10.1016/j.actbio.2015.11.034. Review.

PMID:
26602821
16.

Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds.

Atzet S, Curtin S, Trinh P, Bryant S, Ratner B.

Biomacromolecules. 2008 Dec;9(12):3370-7. doi: 10.1021/bm800686h.

17.

In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering.

Kim J, Kim IS, Cho TH, Kim HC, Yoon SJ, Choi J, Park Y, Sun K, Hwang SJ.

J Biomed Mater Res A. 2010 Dec 1;95(3):673-81. doi: 10.1002/jbm.a.32884.

PMID:
20725983
18.

Proteoglycans and glycosaminoglycans improve toughness of biocompatible double network hydrogels.

Zhao Y, Nakajima T, Yang JJ, Kurokawa T, Liu J, Lu J, Mizumoto S, Sugahara K, Kitamura N, Yasuda K, Daniels AU, Gong JP.

Adv Mater. 2014 Jan 22;26(3):436-42. doi: 10.1002/adma.201303387.

PMID:
24431128
19.

Tough bonding of hydrogels to diverse non-porous surfaces.

Yuk H, Zhang T, Lin S, Parada GA, Zhao X.

Nat Mater. 2016 Feb;15(2):190-6. doi: 10.1038/nmat4463.

20.

Mechanically Durable and Biologically Favorable Protein Hydrogel Based on Elastic Silklike Protein Derived from Sea Anemone.

Yang YJ, Kim CS, Choi BH, Cha HJ.

Biomacromolecules. 2015 Dec 14;16(12):3819-26. doi: 10.1021/acs.biomac.5b01130.

PMID:
26539814
Items per page

Supplemental Content

Support Center