Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Rapid colorimetric detection of Salmonella typhimuriumusing a selective filtration technique combined with antibody-magnetic nanoparticle nanocomposites.

Shim WB, Song JE, Mun H, Chung DH, Kim MG.

Anal Bioanal Chem. 2014 Jan;406(3):859-66. doi: 10.1007/s00216-013-7497-6. Epub 2013 Dec 13.

PMID:
24337136
2.

Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk.

Sung YJ, Suk HJ, Sung HY, Li T, Poo H, Kim MG.

Biosens Bioelectron. 2013 May 15;43:432-9. doi: 10.1016/j.bios.2012.12.052. Epub 2013 Jan 4.

PMID:
23370174
3.

Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella Typhimurium.

Wu W, Li J, Pan D, Li J, Song S, Rong M, Li Z, Gao J, Lu J.

ACS Appl Mater Interfaces. 2014 Oct 8;6(19):16974-81. doi: 10.1021/am5045828. Epub 2014 Sep 19.

PMID:
25188392
4.

Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification.

Salam F, Uludag Y, Tothill IE.

Talanta. 2013 Oct 15;115:761-7. doi: 10.1016/j.talanta.2013.06.034. Epub 2013 Jun 28.

PMID:
24054660
5.

Targeted highly sensitive detection of multi-drug resistant Salmonella DT104 using gold nanoparticles.

Khan SA, Singh AK, Senapati D, Fan Z, Ray PC.

Chem Commun (Camb). 2011 Sep 7;47(33):9444-6. doi: 10.1039/c1cc13199k. Epub 2011 Jul 21.

PMID:
21776500
6.

A novel aptasensor for the colorimetric detection of S. typhimurium based on gold nanoparticles.

Ma X, Song L, Zhou N, Xia Y, Wang Z.

Int J Food Microbiol. 2017 Mar 20;245:1-5. doi: 10.1016/j.ijfoodmicro.2016.12.024. Epub 2016 Dec 30.

PMID:
28107686
7.

Real-time PCR method combined with immunomagnetic separation for detecting healthy and heat-injured Salmonella Typhimurium on raw duck wings.

Zheng Q, Mikš-Krajnik M, Yang Y, Xu W, Yuk HG.

Int J Food Microbiol. 2014 Sep 1;186:6-13. doi: 10.1016/j.ijfoodmicro.2014.06.005. Epub 2014 Jun 13.

PMID:
24974274
8.

Enzyme-linked immunomagnetic electrochemical detection of Salmonella typhimurium.

Gehring AG, Crawford CG, Mazenko RS, van Houten LJ, Brewster JD.

J Immunol Methods. 1996 Sep 9;195(1-2):15-25.

PMID:
8814315
9.

Detection of Salmonella typhimurium in raw meats using in-house prepared monoclonal antibody coated magnetic beads and PCR assay of the fimA gene.

Moreira AN, Conceição FR, Conceição Rde C, Ramos RJ, Carvalhal JB, Dellagostin OA, Aleixo JA.

J Immunoassay Immunochem. 2008;29(1):58-69.

PMID:
18080880
10.

Highly Sensitive Detection of Salmonella typhimurium Using a Colorimetric Paper-Based Analytical Device Coupled with Immunomagnetic Separation.

Srisa-Art M, Boehle KE, Geiss BJ, Henry CS.

Anal Chem. 2018 Jan 2;90(1):1035-1043. doi: 10.1021/acs.analchem.7b04628. Epub 2017 Dec 20.

PMID:
29211962
11.

Magnetic nano-beads based separation combined with propidium monoazide treatment and multiplex PCR assay for simultaneous detection of viable Salmonella Typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes in food products.

Yang Y, Xu F, Xu H, Aguilar ZP, Niu R, Yuan Y, Sun J, You X, Lai W, Xiong Y, Wan C, Wei H.

Food Microbiol. 2013 Jun;34(2):418-24. doi: 10.1016/j.fm.2013.01.004. Epub 2013 Jan 18.

PMID:
23541211
12.

One-step sensitive detection of Salmonella typhimurium by coupling magnetic capture and fluorescence identification with functional nanospheres.

Wen CY, Hu J, Zhang ZL, Tian ZQ, Ou GP, Liao YL, Li Y, Xie M, Sun ZY, Pang DW.

Anal Chem. 2013 Jan 15;85(2):1223-30. doi: 10.1021/ac303204q. Epub 2013 Jan 4.

PMID:
23256523
13.

A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk.

Dong J, Zhao H, Xu M, Ma Q, Ai S.

Food Chem. 2013 Dec 1;141(3):1980-6. doi: 10.1016/j.foodchem.2013.04.098. Epub 2013 May 10.

PMID:
23870918
14.

Immunochromatographic strip assay for the rapid and sensitive detection of Salmonella Typhimurium in artificially contaminated tomato samples.

Shukla S, Leem H, Lee JS, Kim M.

Can J Microbiol. 2014 Jun;60(6):399-406. doi: 10.1139/cjm-2014-0223.

PMID:
24896193
15.

Scano-magneto immunoassay based on carbon nanotubes/gold nanoparticles nanocomposite for Salmonella enterica serovar Typhimurium detection.

Amaro M, Oaew S, Surareungchai W.

Biosens Bioelectron. 2012 Oct-Dec;38(1):157-62. doi: 10.1016/j.bios.2012.05.018. Epub 2012 May 29.

PMID:
22705403
16.

One-pot synthesis of porphyrin functionalized γ-Fe2O3 nanocomposites as peroxidase mimics for H2O2 and glucose detection.

Liu Q, Zhang L, Li H, Jia Q, Jiang Y, Yang Y, Zhu R.

Mater Sci Eng C Mater Biol Appl. 2015 Oct;55:193-200. doi: 10.1016/j.msec.2015.05.028. Epub 2015 May 9.

PMID:
26117755
17.

Rapid colorimetric identification and targeted photothermal lysis of Salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles.

Wang S, Singh AK, Senapati D, Neely A, Yu H, Ray PC.

Chemistry. 2010 May 17;16(19):5600-6. doi: 10.1002/chem.201000176.

PMID:
20397252
18.
19.

Development of aptamer-conjugated magnetic graphene/gold nanoparticle hybrid nanocomposites for specific enrichment and rapid analysis of thrombin by MALDI-TOF MS.

Xiong Y, Deng C, Zhang X.

Talanta. 2014 Nov;129:282-9. doi: 10.1016/j.talanta.2014.05.045. Epub 2014 Jun 6.

PMID:
25127596
20.

In-situ fluorescent immunomagnetic multiplex detection of foodborne pathogens in very low numbers.

Cho IH, Mauer L, Irudayaraj J.

Biosens Bioelectron. 2014 Jul 15;57:143-8. doi: 10.1016/j.bios.2014.02.012. Epub 2014 Feb 19.

PMID:
24583684

Supplemental Content

Support Center