Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 153

1.

Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo.

Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS.

Nature. 2014 Jan 30;505(7485):701-5. doi: 10.1038/nature12894. Epub 2013 Dec 15.

2.

Melting temperature highlights functionally important RNA structure and sequence elements in yeast mRNA coding regions.

Qi F, Frishman D.

Nucleic Acids Res. 2017 Jun 2;45(10):6109-6118. doi: 10.1093/nar/gkx161.

3.

Kinetics and thermodynamics make different contributions to RNA folding in vitro and in yeast.

Mahen EM, Harger JW, Calderon EM, Fedor MJ.

Mol Cell. 2005 Jul 1;19(1):27-37.

4.

Genome-wide measurement of RNA secondary structure in yeast.

Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E.

Nature. 2010 Sep 2;467(7311):103-7. doi: 10.1038/nature09322.

5.

Comparative analyses of the secondary structures of synthetic and intracellular yeast MFA2 mRNAs.

Doktycz MJ, Larimer FW, Pastrnak M, Stevens A.

Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14614-21.

6.
7.

In Vivo Mapping of Eukaryotic RNA Interactomes Reveals Principles of Higher-Order Organization and Regulation.

Aw JG, Shen Y, Wilm A, Sun M, Lim XN, Boon KL, Tapsin S, Chan YS, Tan CP, Sim AY, Zhang T, Susanto TT, Fu Z, Nagarajan N, Wan Y.

Mol Cell. 2016 May 19;62(4):603-17. doi: 10.1016/j.molcel.2016.04.028. Epub 2016 May 12.

8.

Genome-wide analysis of translational efficiency reveals distinct but overlapping functions of yeast DEAD-box RNA helicases Ded1 and eIF4A.

Sen ND, Zhou F, Ingolia NT, Hinnebusch AG.

Genome Res. 2015 Aug;25(8):1196-205. doi: 10.1101/gr.191601.115. Epub 2015 Jun 29.

9.

A DEAD-box RNA helicase promotes thermodynamic equilibration of kinetically trapped RNA structures in vivo.

Ruminski DJ, Watson PY, Mahen EM, Fedor MJ.

RNA. 2016 Mar;22(3):416-27. doi: 10.1261/rna.055178.115. Epub 2016 Jan 12.

10.

Determination of in vivo RNA kinetics using RATE-seq.

Neymotin B, Athanasiadou R, Gresham D.

RNA. 2014 Oct;20(10):1645-52. doi: 10.1261/rna.045104.114. Epub 2014 Aug 26.

11.

In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.

Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, Assmann SM.

Nature. 2014 Jan 30;505(7485):696-700. doi: 10.1038/nature12756. Epub 2013 Nov 24.

PMID:
24270811
12.

Thermodynamics of folding a pseudoknotted mRNA fragment.

Gluick TC, Draper DE.

J Mol Biol. 1994 Aug 12;241(2):246-62.

PMID:
7520082
13.

DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo.

Zubradt M, Gupta P, Persad S, Lambowitz AM, Weissman JS, Rouskin S.

Nat Methods. 2017 Jan;14(1):75-82. doi: 10.1038/nmeth.4057. Epub 2016 Nov 7.

14.
15.

Molecular biology: A second layer of information in RNA.

Ramos SB, Laederach A.

Nature. 2014 Jan 30;505(7485):621-2. doi: 10.1038/505621a. No abstract available.

17.
18.

Mod-seq: high-throughput sequencing for chemical probing of RNA structure.

Talkish J, May G, Lin Y, Woolford JL Jr, McManus CJ.

RNA. 2014 May;20(5):713-20. doi: 10.1261/rna.042218.113. Epub 2014 Mar 24.

19.

Genome-Wide Approaches for RNA Structure Probing.

Silverman IM, Berkowitz ND, Gosai SJ, Gregory BD.

Adv Exp Med Biol. 2016;907:29-59. doi: 10.1007/978-3-319-29073-7_2.

PMID:
27256381
20.

Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast.

Geisberg JV, Moqtaderi Z, Fan X, Ozsolak F, Struhl K.

Cell. 2014 Feb 13;156(4):812-24. doi: 10.1016/j.cell.2013.12.026.

Supplemental Content

Support Center