Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 149

1.

(9)Be(d,n)(10)B-based neutron sources for BNCT.

Capoulat ME, Herrera MS, Minsky DM, González SJ, Kreiner AJ.

Appl Radiat Isot. 2014 Jun;88:190-4. doi: 10.1016/j.apradiso.2013.11.037. Epub 2013 Nov 27.

PMID:
24332880
2.

An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.

Lee DJ, Han CY, Park SH, Kim JK.

Radiat Prot Dosimetry. 2004;110(1-4):655-60.

PMID:
15353726
3.

Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).

Capoulat ME, Minsky DM, Kreiner AJ.

Phys Med. 2014 Mar;30(2):133-46. doi: 10.1016/j.ejmp.2013.07.001. Epub 2013 Jul 21.

PMID:
23880544
4.

A TPD and AR based comparison of accelerator neutron irradiation fields between (7)Li and W targets for BNCT.

Tanaka K, Endo S, Yonai S, Baba M, Hoshi M.

Appl Radiat Isot. 2014 Jun;88:229-32. doi: 10.1016/j.apradiso.2013.11.098. Epub 2013 Dec 4.

PMID:
24359788
5.

Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

Blue TE, Yanch JC.

J Neurooncol. 2003 Mar-Apr;62(1-2):19-31. Review.

PMID:
12749700
6.

High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

Halfon S, Paul M, Arenshtam A, Berkovits D, Cohen D, Eliyahu I, Kijel D, Mardor I, Silverman I.

Appl Radiat Isot. 2014 Jun;88:238-42. doi: 10.1016/j.apradiso.2013.11.043. Epub 2013 Dec 1.

PMID:
24387907
7.

Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

Minsky DM, Kreiner AJ.

Appl Radiat Isot. 2014 Jun;88:233-7. doi: 10.1016/j.apradiso.2013.11.088. Epub 2013 Dec 4.

PMID:
24345525
8.

Accelerator-based BNCT.

Kreiner AJ, Baldo M, Bergueiro JR, Cartelli D, Castell W, Thatar Vento V, Gomez Asoia J, Mercuri D, Padulo J, Suarez Sandin JC, Erhardt J, Kesque JM, Valda AA, Debray ME, Somacal HR, Igarzabal M, Minsky DM, Herrera MS, Capoulat ME, Gonzalez SJ, del Grosso MF, Gagetti L, Suarez Anzorena M, Gun M, Carranza O.

Appl Radiat Isot. 2014 Jun;88:185-9. doi: 10.1016/j.apradiso.2013.11.064. Epub 2013 Dec 1. Review.

PMID:
24365468
9.

Optimum design of a moderator system based on dose calculation for an accelerator driven Boron Neutron Capture Therapy.

Inoue R, Hiraga F, Kiyanagi Y.

Appl Radiat Isot. 2014 Jun;88:225-8. doi: 10.1016/j.apradiso.2013.12.017. Epub 2013 Dec 27.

PMID:
24440538
10.

Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.

Rasouli FS, Masoudi SF.

Appl Radiat Isot. 2012 Dec;70(12):2755-62. doi: 10.1016/j.apradiso.2012.08.008. Epub 2012 Aug 21.

PMID:
23041781
11.

On the optimal energy of epithermal neutron beams for BNCT.

Biscegliet E, Colangelo P, Colonna N, Santorelli P, Variale V.

Phys Med Biol. 2000 Jan;45(1):49-58.

PMID:
10661582
12.

A 13C(d,n)-based epithermal neutron source for Boron Neutron Capture Therapy.

Capoulat ME, Kreiner AJ.

Phys Med. 2017 Jan;33:106-113. doi: 10.1016/j.ejmp.2016.12.017. Epub 2016 Dec 31.

PMID:
28049613
13.

Are high energy proton beams ideal for AB-BNCT? A brief discussion from the viewpoint of fast neutron contamination control.

Lee PY, Liu YH, Jiang SH.

Appl Radiat Isot. 2014 Jun;88:206-10. doi: 10.1016/j.apradiso.2014.03.008. Epub 2014 Mar 18.

PMID:
24721900
14.

Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.

Bleuel DL, Donahue RJ, Ludewigt BA, Vujic J.

Med Phys. 1998 Sep;25(9):1725-34.

PMID:
9775379
15.

Near-threshold (7)Li(p,n)(7)Be neutrons on the practical conditions using thick Li-target and Gaussian proton energies for BNCT.

Kobayashi T, Hayashizaki N, Katabuchi T, Tanaka K, Bengua G, Nakao N, Kosako K.

Appl Radiat Isot. 2014 Jun;88:221-4. doi: 10.1016/j.apradiso.2013.12.024. Epub 2014 Jan 8.

PMID:
24491682
16.

Optimization of an accelerator-based epithermal neutron source for neutron capture therapy.

Kononov OE, Kononov VN, Bokhovko MV, Korobeynikov VV, Soloviev AN, Sysoev AS, Gulidov IA, Chu WT, Nigg DW.

Appl Radiat Isot. 2004 Nov;61(5):1009-13.

PMID:
15308184
17.

[Development of BNCT based on research using accelerator based neutron source].

Kumada H.

Igaku Butsuri. 2012;32(3):104-10. Review. Japanese. No abstract available.

PMID:
24592679
18.

A design study for an accelerator-based epithermal neutron beam for BNCT.

Allen DA, Beynon TD.

Phys Med Biol. 1995 May;40(5):807-21.

PMID:
7652009
19.

Application of a Bonner sphere spectrometer for the determination of the angular neutron energy spectrum of an accelerator-based BNCT facility.

Mirzajani N, Ciolini R, Di Fulvio A, Esposito J, d'Errico F.

Appl Radiat Isot. 2014 Jun;88:216-20. doi: 10.1016/j.apradiso.2013.12.030. Epub 2014 Jan 4.

PMID:
24461556
20.

Development of target system for intense neutron source of p-Li reaction.

Kamada S, Takada M, Suda M, Hamano T, Imaseki H, Hoshi M, Fujii R, Nakamura M, Sato H, Higashimata A, Arai S.

Appl Radiat Isot. 2014 Jun;88:195-7. doi: 10.1016/j.apradiso.2014.03.015. Epub 2014 Apr 13.

PMID:
24786900

Supplemental Content

Support Center