Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 232

1.

Continuous renal replacement therapy reduces the systemic and pulmonary inflammation induced by venovenous extracorporeal membrane oxygenation in a porcine model.

Shi J, Chen Q, Yu W, Shen J, Gong J, He C, Hu Y, Zhang J, Gao T, Xi F, Li J.

Artif Organs. 2014 Mar;38(3):215-23. doi: 10.1111/aor.12154. Epub 2013 Dec 11.

PMID:
24329567
2.

Effects of continuous renal replacement therapy on renal inflammatory cytokines during extracorporeal membrane oxygenation in a porcine model.

Yimin H, Wenkui Y, Jialiang S, Qiyi C, Juanhong S, Zhiliang L, Changsheng H, Ning L, Jieshou L.

J Cardiothorac Surg. 2013 Apr 29;8:113. doi: 10.1186/1749-8090-8-113.

3.

Continuous renal replacement therapy to reduce inflammation in a piglet hemorrhage-reperfusion extracorporeal membrane oxygenation model.

Mu TS, Palmer EG, Batts SG, Lentz-Kapua SL, Uyehara-Lock JH, Uyehara CF.

Pediatr Res. 2012 Sep;72(3):249-55. doi: 10.1038/pr.2012.69. Epub 2012 Jun 5.

PMID:
22669297
4.

Continuous renal replacement therapy (CRRT) attenuates myocardial inflammation and mitochondrial injury induced by venovenous extracorporeal membrane oxygenation (VV ECMO) in a healthy piglet model.

Shen J, Yu W, Chen Q, Shi J, Hu Y, Zhang J, Gao T, Xi F, He C, Gong J, Li N, Li J.

Inflammation. 2013 Oct;36(5):1186-93. doi: 10.1007/s10753-013-9654-7.

PMID:
23700116
5.

Effects of continuous renal replacement therapy on intestinal mucosal barrier function during extracorporeal membrane oxygenation in a porcine model.

He C, Yang S, Yu W, Chen Q, Shen J, Hu Y, Shi J, Wu X, Li J, Li N.

J Cardiothorac Surg. 2014 Apr 23;9:72. doi: 10.1186/1749-8090-9-72.

6.

In-line hemofiltration minimized extracorporeal membrane oxygenation-related inflammation in a porcine model.

S J, S J, C Q, Yu W, H C, H Y, Z J, G T, X F, L J.

Perfusion. 2014 Nov;29(6):526-33. doi: 10.1177/0267659114529320. Epub 2014 Apr 2.

PMID:
24694519
7.

A novel strategy to improve systemic oxygenation in venovenous extracorporeal membrane oxygenation: the "χ-configuration".

Bonacchi M, Harmelin G, Peris A, Sani G.

J Thorac Cardiovasc Surg. 2011 Nov;142(5):1197-204. doi: 10.1016/j.jtcvs.2011.01.046. Epub 2011 Mar 12.

8.

Comparison of a New Miniaturized Extracorporeal Membrane Oxygenation System With Integrated Rotary Blood Pump to a Standard System in a Porcine Model of Acute Lung Injury.

Pilarczyk K, Heckmann J, Lyskawa K, Strauß A, Haake N, Wiese I, Jakob H, Kamler M, Pizanis N.

Artif Organs. 2016 Jul;40(7):645-58. doi: 10.1111/aor.12611. Epub 2015 Dec 4.

PMID:
26636760
9.
10.

The Impact of Renal Failure and Renal Replacement Therapy on Outcome During Extracorporeal Membrane Oxygenation Therapy.

Antonucci E, Lamanna I, Fagnoul D, Vincent JL, De Backer D, Silvio Taccone F.

Artif Organs. 2016 Aug;40(8):746-54. doi: 10.1111/aor.12695. Epub 2016 May 2.

PMID:
27139839
11.

Inflammation and lung injury in an ovine model of extracorporeal membrane oxygenation support.

Passmore MR, Fung YL, Simonova G, Foley SR, Dunster KR, Diab SD, Tung JP, Minchinton RM, McDonald CI, Anstey CM, Shekar K, Fraser JF.

Am J Physiol Lung Cell Mol Physiol. 2016 Dec 1;311(6):L1202-L1212. doi: 10.1152/ajplung.00296.2016. Epub 2016 Nov 4.

PMID:
27815258
12.

Oxygenation and lung morphology in a rabbit pediatric ARDS- model under high peak pressure ventilation plus nitric oxide and surfactant compared with veno-venous ECMO.

Möller JC, Reiss I, Schaible TF, Kohl M, Göpel W, Fischer T, Nitsche EM, Krüger S.

Int J Artif Organs. 1999 Nov;22(11):747-53.

PMID:
10612302
13.

Enhanced hemolysis in pediatric patients requiring extracorporeal membrane oxygenation and continuous renal replacement therapy.

Betrus C, Remenapp R, Charpie J, Kudelka T, Brophy P, Smoyer WE, Lin JJ.

Ann Thorac Cardiovasc Surg. 2007 Dec;13(6):378-83.

PMID:
18292719
14.

The effect of venovenous extra-corporeal membrane oxygenation (ECMO) therapy on immune inflammatory response of cerebral tissues in porcine model.

Chen Q, Yu W, Shi J, Shen J, Hu Y, Gao T, Zhang J, Xi F, Gong J, Li J, Li N.

J Cardiothorac Surg. 2013 Aug 29;8:186. doi: 10.1186/1749-8090-8-186.

15.

Cytokine imbalance in infants receiving extracorporeal membrane oxygenation for respiratory failure.

Mildner RJ, Taub N, Vyas JR, Killer HM, Firmin RK, Field DJ, Kotecha S.

Biol Neonate. 2005;88(4):321-7. Epub 2005 Aug 18.

PMID:
16113527
16.

Impact of extracorporeal membrane oxygenation modality on cytokine release during rescue from infant hypoxia.

Golej J, Winter P, Schöffmann G, Kahlbacher H, Stoll E, Boigner H, Trittenwein G.

Shock. 2003 Aug;20(2):110-5.

PMID:
12865653
17.

Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine.

McILwain RB, Timpa JG, Kurundkar AR, Holt DW, Kelly DR, Hartman YE, Neel ML, Karnatak RK, Schelonka RL, Anantharamaiah GM, Killingsworth CR, Maheshwari A.

Lab Invest. 2010 Jan;90(1):128-39. doi: 10.1038/labinvest.2009.119. Epub 2009 Nov 9.

18.

Combination of extracorporeal membrane oxygenation and continuous renal replacement therapy in critically ill patients: a systematic review.

Chen H, Yu RG, Yin NN, Zhou JX.

Crit Care. 2014 Dec 8;18(6):675. doi: 10.1186/s13054-014-0675-x. Review.

19.

Extracorporeal membrane oxygenation in infants with meconium aspiration syndrome: a decade of experience with venovenous ECMO.

Kugelman A, Gangitano E, Taschuk R, Garza R, Riskin A, McEvoy C, Durand M.

J Pediatr Surg. 2005 Jul;40(7):1082-9.

PMID:
16034749
20.

Effect of venovenous extracorporeal membrane oxygenation on the heart in a healthy piglet model.

Shen J, Yu W, Shi J, Chen Q, Hu Y, Zhang J, Gao T, Xi F, Gong J, He C, Li N, Li J.

J Cardiothorac Surg. 2013 Jun 28;8:163. doi: 10.1186/1749-8090-8-163.

Supplemental Content

Support Center