Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Thermal stability of colloidal InP nanocrystals: small inorganic ligands boost high-temperature photoluminescence.

Rowland CE, Liu W, Hannah DC, Chan MK, Talapin DV, Schaller RD.

ACS Nano. 2014 Jan 28;8(1):977-85. doi: 10.1021/nn405811p. Epub 2013 Dec 23.

PMID:
24328364
2.

The effect of nanocrystal surface structure on the luminescence properties: photoemission study of HF-etched InP nanocrystals.

Adam S, Talapin DV, Borchert H, Lobo A, McGinley C, de Castro AR, Haase M, Weller H, Möller T.

J Chem Phys. 2005 Aug 22;123(8):084706.

PMID:
16164320
3.

Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.

Weiss EA.

Acc Chem Res. 2013 Nov 19;46(11):2607-15. doi: 10.1021/ar400078u. Epub 2013 Jun 4.

PMID:
23734589
4.

The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots.

Narayanaswamy A, Feiner LF, Meijerink A, van der Zaag PJ.

ACS Nano. 2009 Sep 22;3(9):2539-46. doi: 10.1021/nn9004507.

PMID:
19681583
5.

Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.

Kanemitsu Y.

Acc Chem Res. 2013 Jun 18;46(6):1358-66. doi: 10.1021/ar300269z. Epub 2013 Feb 19.

PMID:
23421584
6.

Scalable Ligand-Mediated Transport Synthesis of Organic-Inorganic Hybrid Perovskite Nanocrystals with Resolved Electronic Structure and Ultrafast Dynamics.

Wang L, Williams NE, Malachosky EW, Otto JP, Hayes D, Wood RE, Guyot-Sionnest P, Engel GS.

ACS Nano. 2017 Mar 28;11(3):2689-2696. doi: 10.1021/acsnano.6b07574. Epub 2017 Feb 20.

PMID:
28195690
7.
8.

Radiative and Nonradiative Recombination in CuInS2 Nanocrystals and CuInS2-Based Core/Shell Nanocrystals.

Berends AC, Rabouw FT, Spoor FC, Bladt E, Grozema FC, Houtepen AJ, Siebbeles LD, de Mello Donegá C.

J Phys Chem Lett. 2016 Sep 1;7(17):3503-9. doi: 10.1021/acs.jpclett.6b01668. Epub 2016 Aug 25.

9.

Dynamics of strongly degenerate electron-hole plasmas and excitons in single InP nanowires.

Titova LV, Hoang TB, Yarrison-Rice JM, Jackson HE, Kim Y, Joyce HJ, Gao Q, Tan HH, Jagadish C, Zhang X, Zou J, Smith LM.

Nano Lett. 2007 Nov;7(11):3383-7. Epub 2007 Sep 29.

PMID:
17902724
10.

High-temperature photoluminescence of CdSe/CdS core/shell nanoheterostructures.

Diroll BT, Murray CB.

ACS Nano. 2014 Jun 24;8(6):6466-74. doi: 10.1021/nn5021314. Epub 2014 May 15.

PMID:
24824459
11.

Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals.

Biadala L, Siebers B, Beyazit Y, Tessier MD, Dupont D, Hens Z, Yakovlev DR, Bayer M.

ACS Nano. 2016 Mar 22;10(3):3356-64. doi: 10.1021/acsnano.5b07065. Epub 2016 Feb 24.

PMID:
26889780
12.

Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands.

Nag A, Kovalenko MV, Lee JS, Liu W, Spokoyny B, Talapin DV.

J Am Chem Soc. 2011 Jul 13;133(27):10612-20. doi: 10.1021/ja2029415. Epub 2011 Jun 17.

PMID:
21682249
13.

Time-resolved photoluminescence investigations on HfO2-capped InP nanowires.

Münch S, Reitzenstein S, Borgström M, Thelander C, Samuelson L, Worschech L, Forchel A.

Nanotechnology. 2010 Mar 12;21(10):105711. doi: 10.1088/0957-4484/21/10/105711. Epub 2010 Feb 16.

PMID:
20157234
14.

Temperature- and field-dependent energy transfer in CdSe nanocrystal aggregates studied by magneto-photoluminescence spectroscopy.

Blumling DE, Tokumoto T, McGill S, Knappenberger KL Jr.

Phys Chem Chem Phys. 2012 Aug 21;14(31):11053-9. doi: 10.1039/c2cp41586k. Epub 2012 Jul 6.

PMID:
22767253
15.

Dual Role of Electron-Accepting Metal-Carboxylate Ligands: Reversible Expansion of Exciton Delocalization and Passivation of Nonradiative Trap-States in Molecule-like CdSe Nanocrystals.

Lawrence KN, Dutta P, Nagaraju M, Teunis MB, Muhoberac BB, Sardar R.

J Am Chem Soc. 2016 Oct 5;138(39):12813-12825. Epub 2016 Sep 26.

16.

Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals.

Sykora M, Koposov AY, McGuire JA, Schulze RK, Tretiak O, Pietryga JM, Klimov VI.

ACS Nano. 2010 Apr 27;4(4):2021-34. doi: 10.1021/nn100131w.

PMID:
20369900
17.

Improving carrier injection in colloidal CdSe nanocrystals by embedding them in a pseudomorphic ZnSe/ZnMgSe quantum well structure.

Larramendi EM, Schöps O, Artemyev MV, Schikora D, Lischka K, Woggon U.

Nanotechnology. 2013 Nov 1;24(43):435202. doi: 10.1088/0957-4484/24/43/435202. Epub 2013 Oct 9.

PMID:
24107306
18.

Molybdenum and Tungsten Sulfide Ligands for Versatile Functionalization of All-Inorganic Nanocrystals.

Ban HW, Park S, Jeong H, Gu da H, Jo S, Park SH, Park J, Son JS.

J Phys Chem Lett. 2016 Sep 15;7(18):3627-35. doi: 10.1021/acs.jpclett.6b01578. Epub 2016 Sep 1.

PMID:
27571033
19.

Stacking in colloidal nanoplatelets: tuning excitonic properties.

Guzelturk B, Erdem O, Olutas M, Kelestemur Y, Demir HV.

ACS Nano. 2014 Dec 23;8(12):12524-33. doi: 10.1021/nn5053734. Epub 2014 Dec 11.

PMID:
25469555
20.

Supplemental Content

Support Center