Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

MicroRNA basis of physiological hypertrophy.

Fu S, Zhuo R, Yao M, Zhang J, Zhou H, Xiao J.

Front Genet. 2013 Nov 26;4:253. doi: 10.3389/fgene.2013.00253. eCollection 2013. No abstract available.

2.

Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology.

Hirt MN, Werner T, Indenbirken D, Alawi M, Demin P, Kunze AC, Stenzig J, Starbatty J, Hansen A, Fiedler J, Thum T, Eschenhagen T.

J Mol Cell Cardiol. 2015 Apr;81:1-9. doi: 10.1016/j.yjmcc.2015.01.008. Epub 2015 Jan 26.

PMID:
25633833
3.

Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy.

Seok HY, Chen J, Kataoka M, Huang ZP, Ding J, Yan J, Hu X, Wang DZ.

Circ Res. 2014 May 9;114(10):1585-95. doi: 10.1161/CIRCRESAHA.114.303784. Epub 2014 Mar 21.

4.

Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies.

Bernardo BC, Weeks KL, Pretorius L, McMullen JR.

Pharmacol Ther. 2010 Oct;128(1):191-227. doi: 10.1016/j.pharmthera.2010.04.005. Epub 2010 May 12. Review.

PMID:
20438756
5.

Small changes can make a big difference - microRNA regulation of cardiac hypertrophy.

Gladka MM, da Costa Martins PA, De Windt LJ.

J Mol Cell Cardiol. 2012 Jan;52(1):74-82. doi: 10.1016/j.yjmcc.2011.09.015. Epub 2011 Sep 24. Review.

PMID:
21971075
6.

MicroRNA and cardiac pathologies.

Latronico MV, Catalucci D, Condorelli G.

Physiol Genomics. 2008 Aug 15;34(3):239-42. doi: 10.1152/physiolgenomics.90254.2008. Epub 2008 Jun 10. Review.

7.

Overexpression of microRNA-99a Attenuates Cardiac Hypertrophy.

Li Q, Xie J, Wang B, Li R, Bai J, Ding L, Gu R, Wang L, Xu B.

PLoS One. 2016 Feb 25;11(2):e0148480. doi: 10.1371/journal.pone.0148480. eCollection 2016.

8.

MicroRNAs target gene and signaling pathway by bioinformatics analysis in the cardiac hypertrophy.

Shen E, Diao X, Wei C, Wu Z, Zhang L, Hu B.

Biochem Biophys Res Commun. 2010 Jul 2;397(3):380-5. doi: 10.1016/j.bbrc.2010.05.116. Epub 2010 May 27. Review.

PMID:
20510881
9.

A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure.

van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN.

Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18255-60. Epub 2006 Nov 15.

10.

Targeting microRNAs in Pathological Hypertrophy and Cardiac Failure.

Lv D, Liu J, Zhao C, Sun Q, Zhou Q, Xu J, Xiao J.

Mini Rev Med Chem. 2015;15(6):475-8. Review.

PMID:
25807942
11.

Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure.

McMullen JR, Jennings GL.

Clin Exp Pharmacol Physiol. 2007 Apr;34(4):255-62. Review.

PMID:
17324134
12.

Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats.

Kong SW, Bodyak N, Yue P, Liu Z, Brown J, Izumo S, Kang PM.

Physiol Genomics. 2005 Mar 21;21(1):34-42. Epub 2004 Dec 28.

13.

Thyroid Hormone-Regulated Cardiac microRNAs are Predicted to Suppress Pathological Hypertrophic Signaling.

Janssen R, Zuidwijk MJ, Kuster DW, Muller A, Simonides WS.

Front Endocrinol (Lausanne). 2014 Oct 20;5:171. doi: 10.3389/fendo.2014.00171. eCollection 2014.

14.

The therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy.

Ooi JY, Bernardo BC, McMullen JR.

Future Med Chem. 2014 Feb;6(2):205-22. doi: 10.4155/fmc.13.196. Review.

PMID:
24467244
15.

MicroRNA Clusters in the Adult Mouse Heart: Age-Associated Changes.

Zhang X, Azhar G, Williams ED, Rogers SC, Wei JY.

Biomed Res Int. 2015;2015:732397. doi: 10.1155/2015/732397. Epub 2015 Jun 28.

16.

microRNA-340-5p Functions Downstream of Cardiotrophin-1 to Regulate Cardiac Eccentric Hypertrophy and Heart Failure via Target Gene Dystrophin.

Zhou J, Gao J, Zhang X, Liu Y, Gu S, Zhang X, An X, Yan J, Xin Y, Su P.

Int Heart J. 2015;56(4):454-8. doi: 10.1536/ihj.14-386. Epub 2015 Jun 18.

17.

MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress.

Huang ZP, Chen J, Seok HY, Zhang Z, Kataoka M, Hu X, Wang DZ.

Circ Res. 2013 Apr 26;112(9):1234-43. doi: 10.1161/CIRCRESAHA.112.300682. Epub 2013 Mar 22.

18.

MicroRNA-150 Protects Against Pressure Overload-Induced Cardiac Hypertrophy.

Liu W, Liu Y, Zhang Y, Zhu X, Zhang R, Guan L, Tang Q, Jiang H, Huang C, Huang H.

J Cell Biochem. 2015 Oct;116(10):2166-76. doi: 10.1002/jcb.25057.

PMID:
25639779
19.

Aerobic exercise training-induced left ventricular hypertrophy involves regulatory MicroRNAs, decreased angiotensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7).

Fernandes T, Hashimoto NY, Magalhães FC, Fernandes FB, Casarini DE, Carmona AK, Krieger JE, Phillips MI, Oliveira EM.

Hypertension. 2011 Aug;58(2):182-9. doi: 10.1161/HYPERTENSIONAHA.110.168252. Epub 2011 Jun 27.

20.

Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.

Fernandes T, Soci UP, Oliveira EM.

Braz J Med Biol Res. 2011 Sep;44(9):836-47. Epub 2011 Sep 2. Review.

Supplemental Content

Support Center