Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Caffeine induces alveolar apoptosis in the hyperoxia-exposed developing mouse lung.

Dayanim S, Lopez B, Maisonet TM, Grewal S, Londhe VA.

Pediatr Res. 2014 Mar;75(3):395-402. doi: 10.1038/pr.2013.233. Epub 2013 Dec 6.

2.

Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxia-induced lung injury.

Teng RJ, Jing X, Michalkiewicz T, Afolayan AJ, Wu TJ, Konduri GG.

Am J Physiol Lung Cell Mol Physiol. 2017 May 1;312(5):L586-L598. doi: 10.1152/ajplung.00405.2016. Epub 2017 Feb 17.

PMID:
28213471
3.

Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia.

Alejandre-Alcázar MA, Kwapiszewska G, Reiss I, Amarie OV, Marsh LM, Sevilla-Pérez J, Wygrecka M, Eul B, Köbrich S, Hesse M, Schermuly RT, Seeger W, Eickelberg O, Morty RE.

Am J Physiol Lung Cell Mol Physiol. 2007 Feb;292(2):L537-49. Epub 2006 Oct 27.

PMID:
17071723
4.

Pulmonary effects of keratinocyte growth factor in newborn rats exposed to hyperoxia.

Franco-Montoya ML, Bourbon JR, Durrmeyer X, Lorotte S, Jarreau PH, Delacourt C.

Am J Physiol Lung Cell Mol Physiol. 2009 Nov;297(5):L965-76. doi: 10.1152/ajplung.00136.2009. Epub 2009 Aug 21.

5.

Hyperoxia impairs alveolar formation and induces senescence through decreased histone deacetylase activity and up-regulation of p21 in neonatal mouse lung.

Londhe VA, Sundar IK, Lopez B, Maisonet TM, Yu Y, Aghai ZH, Rahman I.

Pediatr Res. 2011 May;69(5 Pt 1):371-7. doi: 10.1203/PDR.0b013e318211c917.

6.

[Apoptosis in neonatal rat lung exposed to hyperoxia].

Li YX, Luo XP, Liao LJ, Liu WJ, Ning Q.

Zhonghua Er Ke Za Zhi. 2005 Aug;43(8):585-90. Chinese.

PMID:
16191268
7.

Transgenic overexpression of granulocyte macrophage-colony stimulating factor in the lung prevents hyperoxic lung injury.

Paine R 3rd, Wilcoxen SE, Morris SB, Sartori C, Baleeiro CE, Matthay MA, Christensen PJ.

Am J Pathol. 2003 Dec;163(6):2397-406.

8.

Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure.

Velten M, Heyob KM, Rogers LK, Welty SE.

J Appl Physiol (1985). 2010 May;108(5):1347-56. doi: 10.1152/japplphysiol.01392.2009. Epub 2010 Mar 11.

9.

Functional deficiency of aryl hydrocarbon receptor augments oxygen toxicity-induced alveolar simplification in newborn mice.

Shivanna B, Zhang W, Jiang W, Welty SE, Couroucli XI, Wang L, Moorthy B.

Toxicol Appl Pharmacol. 2013 Mar 15;267(3):209-17. doi: 10.1016/j.taap.2013.01.003. Epub 2013 Jan 18.

10.
11.

[Anti-inflammatory effects of erythropoietin on hyperoxia-induced bronchopulmonary dysplasia in newborn rats].

Wang XL, Xue XD.

Zhonghua Er Ke Za Zhi. 2009 Jun;47(6):446-51. Chinese.

PMID:
19951473
12.

Activation of Akt protects alveoli from neonatal oxygen-induced lung injury.

Alphonse RS, Vadivel A, Coltan L, Eaton F, Barr AJ, Dyck JR, Thébaud B.

Am J Respir Cell Mol Biol. 2011 Feb;44(2):146-54. doi: 10.1165/rcmb.2009-0182OC. Epub 2010 Mar 26.

PMID:
20348209
13.

Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia.

Popova AP, Bentley JK, Cui TX, Richardson MN, Linn MJ, Lei J, Chen Q, Goldsmith AM, Pryhuber GS, Hershenson MB.

Am J Physiol Lung Cell Mol Physiol. 2014 Aug 1;307(3):L231-9. doi: 10.1152/ajplung.00342.2013. Epub 2014 Jun 6.

14.

Caffeine Prevents Hyperoxia-Induced Functional and Structural Lung Damage in Preterm Rabbits.

Nagatomo T, Jiménez J, Richter J, De Baere S, Vanoirbeek J, Naulaers G, Allegaert K, Croubels S, Deprest JA, Toelen J.

Neonatology. 2016;109(4):274-81. doi: 10.1159/000442937. Epub 2016 Feb 12.

PMID:
26866610
15.

The role of IL-6 and IL-11 in hyperoxic injury in developing lung.

Chetty A, Cao GJ, Manzo N, Nielsen HC, Waxman A.

Pediatr Pulmonol. 2008 Mar;43(3):297-304. doi: 10.1002/ppul.20777.

PMID:
18214944
16.

Alcohol worsens acute lung injury by inhibiting alveolar sodium transport through the adenosine A1 receptor.

Dada L, Gonzalez AR, Urich D, Soberanes S, Manghi TS, Chiarella SE, Chandel NS, Budinger GR, Mutlu GM.

PLoS One. 2012;7(1):e30448. doi: 10.1371/journal.pone.0030448. Epub 2012 Jan 17.

17.

Angiotensin II type 2 receptor ligand PD123319 attenuates hyperoxia-induced lung and heart injury at a low dose in newborn rats.

Wagenaar GT, Sengers RM, Laghmani el H, Chen X, Lindeboom MP, Roks AJ, Folkerts G, Walther FJ.

Am J Physiol Lung Cell Mol Physiol. 2014 Aug 1;307(3):L261-72. doi: 10.1152/ajplung.00345.2013. Epub 2014 Jun 20.

19.

Hyperoxia-induced neonatal rat lung injury involves activation of TGF-{beta} and Wnt signaling and is protected by rosiglitazone.

Dasgupta C, Sakurai R, Wang Y, Guo P, Ambalavanan N, Torday JS, Rehan VK.

Am J Physiol Lung Cell Mol Physiol. 2009 Jun;296(6):L1031-41. doi: 10.1152/ajplung.90392.2008. Epub 2009 Mar 20.

20.

Prevention of hyperoxia-mediated pulmonary inflammation in neonatal rats by caffeine.

Weichelt U, Cay R, Schmitz T, Strauss E, Sifringer M, Bührer C, Endesfelder S.

Eur Respir J. 2013 Apr;41(4):966-73. doi: 10.1183/09031936.00012412. Epub 2012 Aug 9.

Supplemental Content

Support Center