Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 126

1.

The interaction between eukaryotic initiation factor 1A and eIF5 retains eIF1 within scanning preinitiation complexes.

Luna RE, Arthanari H, Hiraishi H, Akabayov B, Tang L, Cox C, Markus MA, Luna LE, Ikeda Y, Watanabe R, Bedoya E, Yu C, Alikhan S, Wagner G, Asano K.

Biochemistry. 2013 Dec 31;52(52):9510-8. doi: 10.1021/bi4009775. Epub 2013 Dec 19.

2.

The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β.

Luna RE, Arthanari H, Hiraishi H, Nanda J, Martin-Marcos P, Markus MA, Akabayov B, Milbradt AG, Luna LE, Seo HC, Hyberts SG, Fahmy A, Reibarkh M, Miles D, Hagner PR, O'Day EM, Yi T, Marintchev A, Hinnebusch AG, Lorsch JR, Asano K, Wagner G.

Cell Rep. 2012 Jun 28;1(6):689-702. doi: 10.1016/j.celrep.2012.04.007. Epub 2012 May 24.

3.

N- and C-terminal residues of eIF1A have opposing effects on the fidelity of start codon selection.

Fekete CA, Mitchell SF, Cherkasova VA, Applefield D, Algire MA, Maag D, Saini AK, Lorsch JR, Hinnebusch AG.

EMBO J. 2007 Mar 21;26(6):1602-14. Epub 2007 Mar 1.

4.

Coordinated movements of eukaryotic translation initiation factors eIF1, eIF1A, and eIF5 trigger phosphate release from eIF2 in response to start codon recognition by the ribosomal preinitiation complex.

Nanda JS, Saini AK, Muñoz AM, Hinnebusch AG, Lorsch JR.

J Biol Chem. 2013 Feb 22;288(8):5316-29. doi: 10.1074/jbc.M112.440693. Epub 2013 Jan 4.

6.

Eukaryotic initiation factor (eIF) 1 carries two distinct eIF5-binding faces important for multifactor assembly and AUG selection.

Reibarkh M, Yamamoto Y, Singh CR, del Rio F, Fahmy A, Lee B, Luna RE, Ii M, Wagner G, Asano K.

J Biol Chem. 2008 Jan 11;283(2):1094-103. Epub 2007 Nov 1.

7.

β-Hairpin loop of eukaryotic initiation factor 1 (eIF1) mediates 40 S ribosome binding to regulate initiator tRNA(Met) recruitment and accuracy of AUG selection in vivo.

Martin-Marcos P, Nanda J, Luna RE, Wagner G, Lorsch JR, Hinnebusch AG.

J Biol Chem. 2013 Sep 20;288(38):27546-62. doi: 10.1074/jbc.M113.498642. Epub 2013 Jul 26.

8.

The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome.

Passmore LA, Schmeing TM, Maag D, Applefield DJ, Acker MG, Algire MA, Lorsch JR, Ramakrishnan V.

Mol Cell. 2007 Apr 13;26(1):41-50.

9.

Enhanced eIF1 binding to the 40S ribosome impedes conformational rearrangements of the preinitiation complex and elevates initiation accuracy.

Martin-Marcos P, Nanda JS, Luna RE, Zhang F, Saini AK, Cherkasova VA, Wagner G, Lorsch JR, Hinnebusch AG.

RNA. 2014 Feb;20(2):150-67. doi: 10.1261/rna.042069.113. Epub 2013 Dec 13.

10.

Sequential eukaryotic translation initiation factor 5 (eIF5) binding to the charged disordered segments of eIF4G and eIF2β stabilizes the 48S preinitiation complex and promotes its shift to the initiation mode.

Singh CR, Watanabe R, Chowdhury W, Hiraishi H, Murai MJ, Yamamoto Y, Miles D, Ikeda Y, Asano M, Asano K.

Mol Cell Biol. 2012 Oct;32(19):3978-89. doi: 10.1128/MCB.00376-12. Epub 2012 Jul 30.

11.
12.

The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection.

He H, von der Haar T, Singh CR, Ii M, Li B, Hinnebusch AG, McCarthy JE, Asano K.

Mol Cell Biol. 2003 Aug;23(15):5431-45.

13.

Molecular Landscape of the Ribosome Pre-initiation Complex during mRNA Scanning: Structural Role for eIF3c and Its Control by eIF5.

Obayashi E, Luna RE, Nagata T, Martin-Marcos P, Hiraishi H, Singh CR, Erzberger JP, Zhang F, Arthanari H, Morris J, Pellarin R, Moore C, Harmon I, Papadopoulos E, Yoshida H, Nasr ML, Unzai S, Thompson B, Aube E, Hustak S, Stengel F, Dagraca E, Ananbandam A, Gao P, Urano T, Hinnebusch AG, Wagner G, Asano K.

Cell Rep. 2017 Mar 14;18(11):2651-2663. doi: 10.1016/j.celrep.2017.02.052.

14.
15.

Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo.

Cheung YN, Maag D, Mitchell SF, Fekete CA, Algire MA, Takacs JE, Shirokikh N, Pestova T, Lorsch JR, Hinnebusch AG.

Genes Dev. 2007 May 15;21(10):1217-30.

16.

Eukaryotic translation initiation factor 5 is critical for integrity of the scanning preinitiation complex and accurate control of GCN4 translation.

Singh CR, Curtis C, Yamamoto Y, Hall NS, Kruse DS, He H, Hannig EM, Asano K.

Mol Cell Biol. 2005 Jul;25(13):5480-91.

17.

The indispensable N-terminal half of eIF3j/HCR1 cooperates with its structurally conserved binding partner eIF3b/PRT1-RRM and with eIF1A in stringent AUG selection.

Elantak L, Wagner S, Herrmannová A, Karásková M, Rutkai E, Lukavsky PJ, Valásek L.

J Mol Biol. 2010 Mar 5;396(4):1097-116. doi: 10.1016/j.jmb.2009.12.047. Epub 2010 Jan 11.

18.

Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation.

Asano K, Shalev A, Phan L, Nielsen K, Clayton J, Valásek L, Donahue TF, Hinnebusch AG.

EMBO J. 2001 May 1;20(9):2326-37.

19.

Regulatory elements in eIF1A control the fidelity of start codon selection by modulating tRNA(i)(Met) binding to the ribosome.

Saini AK, Nanda JS, Lorsch JR, Hinnebusch AG.

Genes Dev. 2010 Jan 1;24(1):97-110. doi: 10.1101/gad.1871910. Erratum in: Genes Dev. 2013 May 1;27(9):1072.

20.

eIF1 controls multiple steps in start codon recognition during eukaryotic translation initiation.

Nanda JS, Cheung YN, Takacs JE, Martin-Marcos P, Saini AK, Hinnebusch AG, Lorsch JR.

J Mol Biol. 2009 Nov 27;394(2):268-85. doi: 10.1016/j.jmb.2009.09.017. Epub 2009 Sep 12.

Supplemental Content

Support Center