Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 225

1.

Effects of high CO2 on growth and metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen.

Takatani N, Ito T, Kiba T, Mori M, Miyamoto T, Maeda S, Omata T.

Plant Cell Physiol. 2014 Feb;55(2):281-92. doi: 10.1093/pcp/pct186. Epub 2013 Dec 6.

2.

High CO2 triggers preferential root growth of Arabidopsis thaliana via two distinct systems under low pH and low N stresses.

Hachiya T, Sugiura D, Kojima M, Sato S, Yanagisawa S, Sakakibara H, Terashima I, Noguchi K.

Plant Cell Physiol. 2014 Feb;55(2):269-80. doi: 10.1093/pcp/pcu001. Epub 2014 Jan 7.

3.

Root-shoot interactions explain the reduction of leaf mineral content in Arabidopsis plants grown under elevated [CO2 ] conditions.

Jauregui I, Aparicio-Tejo PM, Avila C, Cañas R, Sakalauskiene S, Aranjuelo I.

Physiol Plant. 2016 Sep;158(1):65-79. doi: 10.1111/ppl.12417. Epub 2016 Mar 16.

PMID:
26801348
4.

The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans.

Reef R, Slot M, Motro U, Motro M, Motro Y, Adame MF, Garcia M, Aranda J, Lovelock CE, Winter K.

Photosynth Res. 2016 Aug;129(2):159-70. doi: 10.1007/s11120-016-0278-2. Epub 2016 Jun 3.

PMID:
27259536
5.

Characterization of metabolic states of Arabidopsis thaliana under diverse carbon and nitrogen nutrient conditions via targeted metabolomic analysis.

Sato S, Yanagisawa S.

Plant Cell Physiol. 2014 Feb;55(2):306-19. doi: 10.1093/pcp/pct192. Epub 2013 Dec 15.

6.

Root and shoot performance of Arabidopsis thaliana exposed to elevated CO2: A physiologic, metabolic and transcriptomic response.

Jauregui I, Aparicio-Tejo PM, Avila C, Rueda-López M, Aranjuelo I.

J Plant Physiol. 2015 Sep 15;189:65-76. doi: 10.1016/j.jplph.2015.09.012. Epub 2015 Oct 22.

PMID:
26519814
7.

Does low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis?

Easlon HM, Carlisle E, McKay JK, Bloom AJ.

Plant Physiol. 2015 Mar;167(3):793-9. doi: 10.1104/pp.114.245241. Epub 2015 Jan 12.

8.

Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum.

Butterly CR, Armstrong R, Chen D, Tang C.

Ann Bot. 2016 Jan;117(1):177-85. doi: 10.1093/aob/mcv140. Epub 2015 Sep 7.

9.

Elevated CO2 plus chronic warming reduce nitrogen uptake and levels or activities of nitrogen-uptake and -assimilatory proteins in tomato roots.

Jayawardena DM, Heckathorn SA, Bista DR, Mishra S, Boldt JK, Krause CR.

Physiol Plant. 2017 Mar;159(3):354-365. doi: 10.1111/ppl.12532. Epub 2017 Jan 19.

PMID:
27893161
10.

Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis.

Aoyama S, Huarancca Reyes T, Guglielminetti L, Lu Y, Morita Y, Sato T, Yamaguchi J.

Plant Cell Physiol. 2014 Feb;55(2):293-305. doi: 10.1093/pcp/pcu002. Epub 2014 Jan 6.

11.

Root damage by insects reverses the effects of elevated atmospheric CO2 on Eucalypt seedlings.

Johnson SN, Riegler M.

PLoS One. 2013 Nov 18;8(11):e79479. doi: 10.1371/journal.pone.0079479. eCollection 2013.

13.

Nucleotide pyrophosphatase/phosphodiesterase 1 exerts a negative effect on starch accumulation and growth in rice seedlings under high temperature and CO2 concentration conditions.

Kaneko K, Inomata T, Masui T, Koshu T, Umezawa Y, Itoh K, Pozueta-Romero J, Mitsui T.

Plant Cell Physiol. 2014 Feb;55(2):320-32. doi: 10.1093/pcp/pct139. Epub 2013 Oct 3.

14.

Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana.

Brauner K, Hörmiller I, Nägele T, Heyer AG.

Plant J. 2014 Jul;79(1):82-91. doi: 10.1111/tpj.12555. Epub 2014 Jun 20.

15.

Exploring ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions.

Sarasketa A, González-Moro MB, González-Murua C, Marino D.

J Exp Bot. 2014 Nov;65(20):6023-33. doi: 10.1093/jxb/eru342. Epub 2014 Sep 9.

16.

Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation.

Krapp A, Berthomé R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, Elftieh S, Major H, Renou JP, Daniel-Vedele F.

Plant Physiol. 2011 Nov;157(3):1255-82. doi: 10.1104/pp.111.179838. Epub 2011 Sep 7.

19.

Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature.

Zhao H, Li Y, Zhang X, Korpelainen H, Li C.

Tree Physiol. 2012 Nov;32(11):1325-38. doi: 10.1093/treephys/tps074. Epub 2012 Aug 23.

PMID:
22918961
20.

Supplemental Content

Support Center