Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 208

1.

Bifunctional reduced graphene oxide/V2O5 composite hydrogel: fabrication, high performance as electromagnetic wave absorbent and supercapacitor.

Zhang H, Xie A, Wang C, Wang H, Shen Y, Tian X.

Chemphyschem. 2014 Feb 3;15(2):366-73. doi: 10.1002/cphc.201300822. Epub 2013 Dec 6.

PMID:
24318771
2.

Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors.

Li M, Sun G, Yin P, Ruan C, Ai K.

ACS Appl Mater Interfaces. 2013 Nov 13;5(21):11462-70. doi: 10.1021/am403739g. Epub 2013 Oct 31.

PMID:
24138545
3.

Hybrid of MoS₂ and Reduced Graphene Oxide: A Lightweight and Broadband Electromagnetic Wave Absorber.

Wang Y, Chen D, Yin X, Xu P, Wu F, He M.

ACS Appl Mater Interfaces. 2015 Dec 2;7(47):26226-34. doi: 10.1021/acsami.5b08410. Epub 2015 Nov 17.

PMID:
26575796
4.

Porous NiCo2O4 nanosheets/reduced graphene oxide composite: facile synthesis and excellent capacitive performance for supercapacitors.

Ma L, Shen X, Ji Z, Cai X, Zhu G, Chen K.

J Colloid Interface Sci. 2015 Feb 15;440:211-8. doi: 10.1016/j.jcis.2014.11.008. Epub 2014 Nov 11.

PMID:
25460708
5.

Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor.

Ghosh D, Das CK.

ACS Appl Mater Interfaces. 2015 Jan 21;7(2):1122-31. doi: 10.1021/am506738y. Epub 2015 Jan 12.

PMID:
25539030
6.

One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage.

Lee M, Balasingam SK, Jeong HY, Hong WG, Lee HB, Kim BH, Jun Y.

Sci Rep. 2015 Jan 30;5:8151. doi: 10.1038/srep08151.

7.

In situ growth of MoS2 nanosheets on reduced graphene oxide (RGO) surfaces: interfacial enhancement of absorbing performance against electromagnetic pollution.

Xie A, Sun M, Zhang K, Jiang W, Wu F, He M.

Phys Chem Chem Phys. 2016 Sep 28;18(36):24931-6. doi: 10.1039/c6cp04600b. Epub 2016 Aug 22.

PMID:
27546736
8.

Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method.

Liu PB, Huang Y, Sun X.

ACS Appl Mater Interfaces. 2013 Dec 11;5(23):12355-60. doi: 10.1021/am404561c. Epub 2013 Nov 20.

PMID:
24218981
9.

Cross-linker mediated formation of sulfur-functionalized V2O5/graphene aerogels and their enhanced pseudocapacitive performance.

Yilmaz G, Lu X, Ho GW.

Nanoscale. 2017 Jan 5;9(2):802-811. doi: 10.1039/c6nr08233e.

PMID:
27982151
10.

Reduced graphene oxide hydrogel film with a continuous ion transport network for supercapacitors.

Feng X, Chen W, Yan L.

Nanoscale. 2015 Feb 28;7(8):3712-8. doi: 10.1039/c4nr06897a.

PMID:
25641022
11.
12.

Bamboo-like Composites of V2O5/Polyindole and Activated Carbon Cloth as Electrodes for All-Solid-State Flexible Asymmetric Supercapacitors.

Zhou X, Chen Q, Wang A, Xu J, Wu S, Shen J.

ACS Appl Mater Interfaces. 2016 Feb 17;8(6):3776-83. doi: 10.1021/acsami.5b10196. Epub 2016 Feb 2.

PMID:
26796859
13.

Facile Co-Electrodeposition Method for High-Performance Supercapacitor Based on Reduced Graphene Oxide/Polypyrrole Composite Film.

Chen J, Wang Y, Cao J, Liu Y, Zhou Y, Ouyang JH, Jia D.

ACS Appl Mater Interfaces. 2017 Jun 14;9(23):19831-19842. doi: 10.1021/acsami.7b03786. Epub 2017 Jun 2.

PMID:
28537372
14.

Direct formation of reduced graphene oxide and 3D lightweight nickel network composite foam by hydrohalic acids and its application for high-performance supercapacitors.

Huang H, Tang Y, Xu L, Tang S, Du Y.

ACS Appl Mater Interfaces. 2014 Jul 9;6(13):10248-57. doi: 10.1021/am501635h. Epub 2014 Jun 27.

PMID:
24936935
15.

Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes.

Kou L, Liu Z, Huang T, Zheng B, Tian Z, Deng Z, Gao C.

Nanoscale. 2015 Mar 7;7(9):4080-7. doi: 10.1039/c4nr07038k.

PMID:
25660705
16.

Graphene-based 3D composite hydrogel by anchoring Co3O4 nanoparticles with enhanced electrochemical properties.

Yuan J, Zhu J, Bi H, Meng X, Liang S, Zhang L, Wang X.

Phys Chem Chem Phys. 2013 Aug 21;15(31):12940-5. doi: 10.1039/c3cp51710a.

PMID:
23812434
17.

Interconnected 3 D Network of Graphene-Oxide Nanosheets Decorated with Carbon Dots for High-Performance Supercapacitors.

Zhao X, Li M, Dong H, Liu Y, Hu H, Cai Y, Liang Y, Xiao Y, Zheng M.

ChemSusChem. 2017 Jun 22;10(12):2626-2634. doi: 10.1002/cssc.201700474. Epub 2017 May 22.

PMID:
28440020
18.

Mechanically Tough Large-Area Hierarchical Porous Graphene Films for High-Performance Flexible Supercapacitor Applications.

Xiong Z, Liao C, Han W, Wang X.

Adv Mater. 2015 Jul 1. doi: 10.1002/adma.201501983. [Epub ahead of print]

PMID:
26135240
19.

Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes.

Zhang LL, Zhao S, Tian XN, Zhao XS.

Langmuir. 2010 Nov 16;26(22):17624-8. doi: 10.1021/la103413s. Epub 2010 Oct 20.

PMID:
20961127
20.

Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.

He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E.

ACS Nano. 2013 Jan 22;7(1):174-82. doi: 10.1021/nn304833s. Epub 2012 Dec 31.

PMID:
23249211

Supplemental Content

Support Center