Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 80

1.

A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals.

Wang Y, Zhou K, Huang G, Hensley C, Huang X, Ma X, Zhao T, Sumer BD, DeBerardinis RJ, Gao J.

Nat Mater. 2014 Feb;13(2):204-12. doi: 10.1038/nmat3819.

2.

Cancer imaging: Lighting up tumours.

Ling D, Hackett MJ, Hyeon T.

Nat Mater. 2014 Feb;13(2):122-4. doi: 10.1038/nmat3860. No abstract available.

PMID:
24452354
3.

Self-assembled peptide nanoparticles as tumor microenvironment activatable probes for tumor targeting and imaging.

Zhao Y, Ji T, Wang H, Li S, Zhao Y, Nie G.

J Control Release. 2014 Mar 10;177:11-9. doi: 10.1016/j.jconrel.2013.12.037.

PMID:
24417969
4.

pH triggered in vivo photothermal therapy and fluorescence nanoplatform of cancer based on responsive polymer-indocyanine green integrated reduced graphene oxide.

Sharker SM, Lee JE, Kim SH, Jeong JH, In I, Lee H, Park SY.

Biomaterials. 2015 Aug;61:229-38. doi: 10.1016/j.biomaterials.2015.05.040.

PMID:
26005762
5.

Fluorescence Quenching Nanoprobes Dedicated to In Vivo Photoacoustic Imaging and High-Efficient Tumor Therapy in Deep-Seated Tissue.

Qin H, Zhou T, Yang S, Xing D.

Small. 2015 Jun 10;11(22):2675-86. doi: 10.1002/smll.201403395.

PMID:
25656695
6.

Near-Infrared Confocal Laser Endomicroscopy Detects Colorectal Cancer via an Integrin αvβ 3 Optical Probe.

Schulz P, Dierkes C, Wiedenmann B, Grötzinger C.

Mol Imaging Biol. 2015 Aug;17(4):450-60. doi: 10.1007/s11307-015-0825-9.

PMID:
25622811
7.

Magainin II modified polydiacetylene micelles for cancer therapy.

Yang D, Zou R, Zhu Y, Liu B, Yao D, Jiang J, Wu J, Tian H.

Nanoscale. 2014 Dec 21;6(24):14772-83. doi: 10.1039/c4nr04405c.

PMID:
25355048
8.

Targeted imaging of cancer by fluorocoxib C, a near-infrared cyclooxygenase-2 probe.

Uddin MJ, Crews BC, Ghebreselasie K, Daniel CK, Kingsley PJ, Xu S, Marnett LJ.

J Biomed Opt. 2015 May;20(5):50502. doi: 10.1117/1.JBO.20.5.050502.

9.

Excitation-Selectable Nanoprobe for Tumor Fluorescence Imaging and Near-Infrared Thermal Therapy.

Wei Y, Chen Q, Wu B, Xing D.

J Biomed Nanotechnol. 2016 Jan;12(1):91-102.

PMID:
27301175
10.

A Quick Responsive Fluorogenic pH Probe for Ovarian Tumor Imaging.

Tung CH, Qi J, Hu L, Han MS, Kim Y.

Theranostics. 2015 Aug 1;5(10):1166-74. doi: 10.7150/thno.12813.

11.

Tumor-responsive fluorescent light-up probe based on a gold nanoparticle/conjugated polyelectrolyte hybrid.

Yuan Y, Ding D, Li K, Liu J, Liu B.

Small. 2014 May 28;10(10):1967-75. doi: 10.1002/smll.201302765.

PMID:
24616338
12.

Protease-activated ratiometric fluorescent probe for pH mapping of malignant tumors.

Hou Y, Zhou J, Gao Z, Sun X, Liu C, Shangguan D, Yang W, Gao M.

ACS Nano. 2015 Mar 24;9(3):3199-205. doi: 10.1021/acsnano.5b00276.

PMID:
25670342
13.

Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy.

Gao S, Zhang L, Wang G, Yang K, Chen M, Tian R, Ma Q, Zhu L.

Biomaterials. 2016 Feb;79:36-45. doi: 10.1016/j.biomaterials.2015.11.041.

PMID:
26691399
14.

Targeted and intracellular triggered delivery of therapeutics to cancer cells and the tumor microenvironment: impact on the treatment of breast cancer.

Moura V, Lacerda M, Figueiredo P, Corvo ML, Cruz ME, Soares R, de Lima MC, Simões S, Moreira JN.

Breast Cancer Res Treat. 2012 May;133(1):61-73. doi: 10.1007/s10549-011-1688-7.

PMID:
21805188
15.

SHG nanoprobes: advancing harmonic imaging in biology.

Dempsey WP, Fraser SE, Pantazis P.

Bioessays. 2012 May;34(5):351-60. doi: 10.1002/bies.201100106. Review.

PMID:
22392481
16.

Lipid nanoparticle vectorization of indocyanine green improves fluorescence imaging for tumor diagnosis and lymph node resection.

Navarro FP, Berger M, Guillermet S, Josserand V, Guyon L, Neumann E, Vinet F, Texier I.

J Biomed Nanotechnol. 2012 Oct;8(5):730-41.

PMID:
22888743
17.

A novel method to visually determine the intracellular pH of xenografted tumor in vivo by utilizing fluorescent protein as an indicator.

Tanaka S, Harada H, Hiraoka M.

Biochem Biophys Res Commun. 2015 Sep 4;464(4):1151-6. doi: 10.1016/j.bbrc.2015.07.095.

PMID:
26210450
18.

Distinguished photons: a review of in vivo spectral fluorescence imaging in small animals.

Mansfield JR.

Curr Pharm Biotechnol. 2010 Sep 1;11(6):628-38. Review.

PMID:
20497114
19.

Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo.

Zheng X, Wang X, Mao H, Wu W, Liu B, Jiang X.

Nat Commun. 2015 Jan 5;6:5834. doi: 10.1038/ncomms6834.

PMID:
25556360
20.

Aqueous synthesized near-infrared-emitting quantum dots for RGD-based in vivo active tumour targeting.

Lu Y, Zhong Y, Wang J, Su Y, Peng F, Zhou Y, Jiang X, He Y.

Nanotechnology. 2013 Apr 5;24(13):135101. doi: 10.1088/0957-4484/24/13/135101.

PMID:
23478489

Supplemental Content

Support Center