Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 239

1.

Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds.

Daniele MA, Adams AA, Naciri J, North SH, Ligler FS.

Biomaterials. 2014 Feb;35(6):1845-56. doi: 10.1016/j.biomaterials.2013.11.009. Epub 2013 Dec 5.

PMID:
24314597
2.

3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels.

Fu Y, Xu K, Zheng X, Giacomin AJ, Mix AW, Kao WJ.

Biomaterials. 2012 Jan;33(1):48-58. doi: 10.1016/j.biomaterials.2011.09.031. Epub 2011 Sep 28.

3.

An interpenetrating HA/G/CS biomimic hydrogel via Diels-Alder click chemistry for cartilage tissue engineering.

Yu F, Cao X, Zeng L, Zhang Q, Chen X.

Carbohydr Polym. 2013 Aug 14;97(1):188-95. doi: 10.1016/j.carbpol.2013.04.046. Epub 2013 Apr 26.

PMID:
23769536
4.

Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering.

Liu Y, Chan-Park MB.

Biomaterials. 2009 Jan;30(2):196-207. doi: 10.1016/j.biomaterials.2008.09.041. Epub 2008 Oct 14.

PMID:
18922573
5.

Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds.

Chan BK, Wippich CC, Wu CJ, Sivasankar PM, Schmidt G.

Macromol Biosci. 2012 Nov;12(11):1490-501. doi: 10.1002/mabi.201200234. Epub 2012 Oct 15.

PMID:
23070957
6.

Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.

DeKosky BJ, Dormer NH, Ingavle GC, Roatch CH, Lomakin J, Detamore MS, Gehrke SH.

Tissue Eng Part C Methods. 2010 Dec;16(6):1533-42. doi: 10.1089/ten.tec.2009.0761. Epub 2010 Jul 13.

7.

A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.

Liu Y, Chan-Park MB.

Biomaterials. 2010 Feb;31(6):1158-70. doi: 10.1016/j.biomaterials.2009.10.040. Epub 2009 Nov 7.

PMID:
19897239
8.

Thiol-ene-based biological/synthetic hybrid biomatrix for 3-D living cell culture.

Xu K, Fu Y, Chung W, Zheng X, Cui Y, Hsu IC, Kao WJ.

Acta Biomater. 2012 Jul;8(7):2504-16. doi: 10.1016/j.actbio.2012.03.049. Epub 2012 Apr 5.

9.

Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering.

Grover GN, Rao N, Christman KL.

Nanotechnology. 2014 Jan 10;25(1):014011. doi: 10.1088/0957-4484/25/1/014011. Epub 2013 Dec 11.

10.

The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks.

Kutty JK, Cho E, Soo Lee J, Vyavahare NR, Webb K.

Biomaterials. 2007 Nov;28(33):4928-38. Epub 2007 Aug 27.

PMID:
17720239
11.

In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching.

Sokic S, Christenson M, Larson J, Papavasiliou G.

Macromol Biosci. 2014 May;14(5):731-9. doi: 10.1002/mabi.201300406. Epub 2014 Jan 20.

PMID:
24443002
12.

Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration.

Zhang J, Wang J, Zhang H, Lin J, Ge Z, Zou X.

Biomed Mater. 2016 Jun 15;11(3):035014. doi: 10.1088/1748-6041/11/3/035014.

PMID:
27305040
13.

PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids.

Lin CC, Raza A, Shih H.

Biomaterials. 2011 Dec;32(36):9685-95. doi: 10.1016/j.biomaterials.2011.08.083. Epub 2011 Sep 14.

14.

Fabrication of poly(ethylene glycol): gelatin methacrylate composite nanostructures with tunable stiffness and degradation for vascular tissue engineering.

Kim P, Yuan A, Nam KH, Jiao A, Kim DH.

Biofabrication. 2014 Jun;6(2):024112. doi: 10.1088/1758-5082/6/2/024112. Epub 2014 Apr 10.

PMID:
24717683
15.

An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration.

Gan Y, Li P, Wang L, Mo X, Song L, Xu Y, Zhao C, Ouyang B, Tu B, Luo L, Zhu L, Dong S, Li F, Zhou Q.

Biomaterials. 2017 Aug;136:12-28. doi: 10.1016/j.biomaterials.2017.05.017. Epub 2017 May 10.

PMID:
28505597
16.

The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability.

Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P.

Biomaterials. 2014 Jan;35(1):49-62. doi: 10.1016/j.biomaterials.2013.09.078. Epub 2013 Oct 7.

PMID:
24112804
17.

Mechanically tough biomacromolecular IPN hydrogel fibers by enzymatic and ionic crosslinking.

Hu X, Lu L, Xu C, Li X.

Int J Biol Macromol. 2015 Jan;72:403-9. doi: 10.1016/j.ijbiomac.2014.08.043. Epub 2014 Sep 1.

PMID:
25193098
18.

In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells.

Truong VX, Hun ML, Li F, Chidgey AP, Forsythe JS.

Biomater Sci. 2016 Jul 21;4(7):1123-31. doi: 10.1039/c6bm00254d. Epub 2016 May 24.

PMID:
27217071
19.

Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.

Zhang X, Xu B, Puperi DS, Yonezawa AL, Wu Y, Tseng H, Cuchiara ML, West JL, Grande-Allen KJ.

Acta Biomater. 2015 Mar;14:11-21. doi: 10.1016/j.actbio.2014.11.042. Epub 2014 Nov 26.

20.

Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering.

Zhao X, Lang Q, Yildirimer L, Lin ZY, Cui W, Annabi N, Ng KW, Dokmeci MR, Ghaemmaghami AM, Khademhosseini A.

Adv Healthc Mater. 2016 Jan 7;5(1):108-18. doi: 10.1002/adhm.201500005. Epub 2015 Apr 16.

Supplemental Content

Support Center