Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.
2.

Curcumin-mediated lifespan extension in Caenorhabditis elegans.

Liao VH, Yu CW, Chu YJ, Li WH, Hsieh YC, Wang TT.

Mech Ageing Dev. 2011 Oct;132(10):480-7. doi: 10.1016/j.mad.2011.07.008.

PMID:
21855561
3.

Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans.

Hoeven Rv, McCallum KC, Cruz MR, Garsin DA.

PLoS Pathog. 2011 Dec;7(12):e1002453. doi: 10.1371/journal.ppat.1002453.

4.

Monascus-fermented dioscorea enhances oxidative stress resistance via DAF-16/FOXO in Caenorhabditis elegans.

Shi YC, Yu CW, Liao VH, Pan TM.

PLoS One. 2012;7(6):e39515. doi: 10.1371/journal.pone.0039515.

5.

Selenite protects Caenorhabditis elegans from oxidative stress via DAF-16 and TRXR-1.

Li WH, Shi YC, Chang CH, Huang CW, Hsiu-Chuan Liao V.

Mol Nutr Food Res. 2014 Apr;58(4):863-74. doi: 10.1002/mnfr.201300404.

PMID:
24254253
6.

Beta-caryophyllene modulates expression of stress response genes and mediates longevity in Caenorhabditis elegans.

Pant A, Saikia SK, Shukla V, Asthana J, Akhoon BA, Pandey R.

Exp Gerontol. 2014 Sep;57:81-95. doi: 10.1016/j.exger.2014.05.007.

PMID:
24835194
7.

Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans.

Kampkötter A, Gombitang Nkwonkam C, Zurawski RF, Timpel C, Chovolou Y, Wätjen W, Kahl R.

Arch Toxicol. 2007 Dec;81(12):849-58.

PMID:
17551714
8.

The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 and osr-1.

Guha S, Cao M, Kane RM, Savino AM, Zou S, Dong Y.

Age (Dordr). 2013 Oct;35(5):1559-74. doi: 10.1007/s11357-012-9459-x.

9.

Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone.

Przybysz AJ, Choe KP, Roberts LJ, Strange K.

Mech Ageing Dev. 2009 Jun;130(6):357-69. doi: 10.1016/j.mad.2009.02.004.

10.

Carqueja (Baccharis trimera) Protects against Oxidative Stress and β-Amyloid-Induced Toxicity in Caenorhabditis elegans.

Paiva FA, Bonomo Lde F, Boasquivis PF, de Paula IT, Guerra JF, Leal WM, Silva ME, Pedrosa ML, Oliveira Rde P.

Oxid Med Cell Longev. 2015;2015:740162. doi: 10.1155/2015/740162.

11.

Benzo-α-pyrene induced oxidative stress in Caenorhabditis elegans and the potential involvements of microRNA.

Wu H, Huang C, Taki FA, Zhang Y, Dobbins DL, Li L, Yan H, Pan X.

Chemosphere. 2015 Nov;139:496-503. doi: 10.1016/j.chemosphere.2015.08.031.

PMID:
26291679
12.

Curcumin and aging.

Shen LR, Parnell LD, Ordovas JM, Lai CQ.

Biofactors. 2013 Jan-Feb;39(1):133-40. doi: 10.1002/biof.1086. Review.

PMID:
23325575
13.

The Lignan Pinoresinol Induces Nuclear Translocation of DAF-16 in Caenorhabditis elegans but has No Effect on Life Span.

Koch K, Büchter C, Havermann S, Wätjen W.

Phytother Res. 2015 Jun;29(6):894-901. doi: 10.1002/ptr.5330.

PMID:
25826281
14.

Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1.

Heidler T, Hartwig K, Daniel H, Wenzel U.

Biogerontology. 2010 Apr;11(2):183-95. doi: 10.1007/s10522-009-9239-x.

PMID:
19597959
15.
16.

A role for SKN-1/Nrf in pathogen resistance and immunosenescence in Caenorhabditis elegans.

Papp D, Csermely P, Sőti C.

PLoS Pathog. 2012;8(4):e1002673. doi: 10.1371/journal.ppat.1002673.

17.
18.
19.
20.

The p38 signal transduction pathway participates in the oxidative stress-mediated translocation of DAF-16 to Caenorhabditis elegans nuclei.

Kondo M, Yanase S, Ishii T, Hartman PS, Matsumoto K, Ishii N.

Mech Ageing Dev. 2005 Jun-Jul;126(6-7):642-7.

PMID:
15888317
Items per page

Supplemental Content

Support Center