Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Rapid and sensitive detection of lower respiratory tract infections by stuffer-free multiplex ligation-dependent probe amplification.

Chung B, Shin GW, Park CK, Choi W, Chung YJ, Yoon HK, Jung GY.

Electrophoresis. 2014 Feb;35(4):511-4. doi: 10.1002/elps.201300374. Epub 2013 Dec 5.

PMID:
24311198
2.

Multiplex quantitative foodborne pathogen detection using high resolution CE-SSCP coupled stuffer-free multiplex ligation-dependent probe amplification.

Chung B, Shin GW, Na J, Oh MH, Jung GY.

Electrophoresis. 2012 May;33(9-10):1477-81. doi: 10.1002/elps.201100615.

PMID:
22648818
3.

Precise characterization method of antibody-conjugated magnetic nanoparticles for pathogen detection using stuffer-free multiplex ligation-dependent probe amplification.

Chung B, Shin GW, Choi W, Joo J, Jeon S, Jung GY.

Electrophoresis. 2014 Dec;35(23):3283-9. doi: 10.1002/elps.201400180. Epub 2014 Oct 2.

PMID:
25070923
4.

An accurate multiplex antibiotic susceptibility test using a high-resolution CE-SSCP-based stuffer-free multiplex ligation-dependent probe amplification system.

Chung B, Shin GW, Choi W, Hwang HS, Oh MH, Jung GY.

Electrophoresis. 2013 Jan;34(2):284-8. doi: 10.1002/elps.201200372. Epub 2012 Dec 19.

PMID:
23161622
5.
6.

Multiplex identification of drug-resistant Gram-positive pathogens using stuffer-free MLPA system.

Chung B, Park C, Cho SY, Shin S, Yim SH, Jung GY, Lee DG, Chung YJ.

Electrophoresis. 2016 Dec;37(23-24):3079-3083. doi: 10.1002/elps.201600372. Epub 2016 Sep 27.

PMID:
27573990
7.

Triblock copolymer-based microchip device for rapid analysis of stuffer-free multiplex ligation-dependent probe amplification products.

Shin GW, Kim YT, Heo HY, Chung B, Seo TS, Jung GY.

Electrophoresis. 2012 Dec;33(23):3574-8. doi: 10.1002/elps.201200436. Epub 2012 Nov 8.

PMID:
23135832
8.

Stuffer-free multiplex ligation-dependent probe amplification based on conformation-sensitive capillary electrophoresis: a novel technology for robust multiplex determination of copy number variation.

Shin GW, Jung SH, Yim SH, Chung B, Yeol Jung G, Chung YJ.

Electrophoresis. 2012 Oct;33(19-20):3052-61. doi: 10.1002/elps.201200334. Epub 2012 Sep 11.

PMID:
22965760
9.

Precise H1N1 swine influenza detection using stuffer-free multiplex ligation-dependent probe amplification in conformation-sensitive capillary electrophoresis.

Chung B, Shin GW, Hwang HS, Chung YJ, Jung SW, Jung GY.

Anal Biochem. 2012 May 1;424(1):54-6. doi: 10.1016/j.ab.2012.02.009. Epub 2012 Feb 14.

PMID:
22342882
10.

Simultaneous quantitative detection of 12 pathogens using high-resolution CE-SSCP.

Shin GW, Hwang HS, Oh MH, Doh J, Jung GY.

Electrophoresis. 2010 Jul;31(14):2405-10. doi: 10.1002/elps.201000091.

PMID:
20568262
11.

A new single-step quantitative pathogen detection system: template-tagging followed by multiplex asymmetric PCR using common primers and CE-SSCP.

Shin GW, Cho YS, Hwang HS, Oh MH, Nam HG, Park JH, Jung GY.

Electrophoresis. 2009 Aug;30(15):2728-36. doi: 10.1002/elps.200900074.

PMID:
19621380
12.

Simultaneous Detection of 13 Key Bacterial Respiratory Pathogens by Combination of Multiplex PCR and Capillary Electrophoresis.

Jiang LX, Ren HY, Zhou HJ, Zhao SH, Hou BY, Yan JP, Qin T, Chen Y.

Biomed Environ Sci. 2017 Aug;30(8):549-561. doi: 10.3967/bes2017.074.

13.

Evaluation of a multiplex ligation-dependent probe amplification assay for the detection of respiratory pathogens in oncological patients.

Berning L, Aberle SW, Simon B, Luger C, Apfalter P, Machherndl-Spandl S, Kerschner H.

J Clin Virol. 2014 Jun;60(2):141-6. doi: 10.1016/j.jcv.2014.02.010. Epub 2014 Mar 6.

PMID:
24684925
14.

A two-step quantitative pathogen detection system based on capillary electrophoresis.

Shin GW, Cho YS, Hwang HS, Park JH, Jung GY.

Anal Biochem. 2008 Dec 1;383(1):31-7. doi: 10.1016/j.ab.2008.08.021. Epub 2008 Aug 26.

PMID:
18782551
15.

Development and evaluation of a novel multiplex PCR technology for molecular differential detection of bacterial respiratory disease pathogens.

Benson R, Tondella ML, Bhatnagar J, Carvalho Mda G, Sampson JS, Talkington DF, Whitney AM, Mothershed E, McGee L, Carlone G, McClee V, Guarner J, Zaki S, Dejsiri S, Cronin K, Han J, Fields BS.

J Clin Microbiol. 2008 Jun;46(6):2074-7. doi: 10.1128/JCM.01858-07. Epub 2008 Apr 9.

16.

A robust and simple-to-design multiplex DNA methylation assay based on MS-MLPA-CE-SSCP.

Na J, Shin GW, Jung GY, Jung GY.

Analyst. 2013 Nov 21;138(22):6969-76. doi: 10.1039/c3an01178j.

PMID:
24089148
17.

Multiplex and quantitative pathogen detection with high-resolution capillary electrophoresis-based single-strand conformation polymorphism.

Hwang HS, Shin GW, Chung B, Na J, Jung GY.

Methods Mol Biol. 2013;919:155-63. doi: 10.1007/978-1-62703-029-8_15.

PMID:
22976099
19.

Analysis of the microbiota of sputum samples from patients with lower respiratory tract infections.

Zhou Y, Lin P, Li Q, Han L, Zheng H, Wei Y, Cui Z, Ni Y, Guo X.

Acta Biochim Biophys Sin (Shanghai). 2010 Oct;42(10):754-61. doi: 10.1093/abbs/gmq081. Epub 2010 Sep 7.

PMID:
20823075
20.

Combining ligation reaction and capillary gel electrophoresis to obtain reliable long DNA probes.

García-Cañas V, Mondello M, Cifuentes A.

J Sep Sci. 2011 May;34(9):1011-9. doi: 10.1002/jssc.201000826. Epub 2011 Mar 15.

PMID:
21404441

Supplemental Content

Support Center