Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Inhibition of the β-catenin/Tcf signaling by caffeoylquinic acids in sweet potato leaf through down regulation of the Tcf-4 transcription.

Taira J, Uehara M, Tsuchida E, Ohmine W.

J Agric Food Chem. 2014 Jan 8;62(1):167-72. doi: 10.1021/jf404411r. Epub 2013 Dec 19.

PMID:
24308429
2.

Effect of repeated harvesting on the content of caffeic acid and seven species of caffeoylquinic acids in sweet potato leaves.

Sasaki K, Oki T, Kai Y, Nishiba Y, Okuno S.

Biosci Biotechnol Biochem. 2015;79(8):1308-14. doi: 10.1080/09168451.2015.1025032. Epub 2015 May 14.

PMID:
25971339
3.

Antimutagenicity of mono-, di-, and tricaffeoylquinic acid derivatives isolated from sweetpotato (Ipomoea batatas L.) leaf.

Yoshimoto M, Yahara S, Okuno S, Islam MS, Ishiguro K, Yamakawa O.

Biosci Biotechnol Biochem. 2002 Nov;66(11):2336-41.

4.

Inhibition of Tcf-4 induces apoptosis and enhances chemosensitivity of colon cancer cells.

Xie J, Xiang DB, Wang H, Zhao C, Chen J, Xiong F, Li TY, Wang XL.

PLoS One. 2012;7(9):e45617. doi: 10.1371/journal.pone.0045617. Epub 2012 Sep 24.

5.

Phospholipase D1 drives a positive feedback loop to reinforce the Wnt/beta-catenin/TCF signaling axis.

Kang DW, Lee SH, Yoon JW, Park WS, Choi KY, Min do S.

Cancer Res. 2010 May 15;70(10):4233-42. doi: 10.1158/0008-5472.CAN-09-3470. Epub 2010 May 4.

6.

Changes in caffeic acid derivatives in sweet potato (Ipomoea batatas L.) during cooking and processing.

Takenaka M, Nanayama K, Isobe S, Murata M.

Biosci Biotechnol Biochem. 2006 Jan;70(1):172-7.

7.

Single-laboratory validation for the determination of caffeic acid and seven caffeoylquinic acids in sweet potato leaves.

Sasaki K, Oki T, Kobayashi T, Kai Y, Okuno S.

Biosci Biotechnol Biochem. 2014;78(12):2073-80. doi: 10.1080/09168451.2014.942253. Epub 2014 Aug 1.

PMID:
25081737
8.

ITF2 prevents activation of the β-catenin-TCF4 complex in colon cancer cells and levels decrease with tumor progression.

Shin HW, Choi H, So D, Kim YI, Cho K, Chung HJ, Lee KH, Chun YS, Cho CH, Kang GH, Kim WH, Park JW.

Gastroenterology. 2014 Aug;147(2):430-442.e8. doi: 10.1053/j.gastro.2014.04.047. Epub 2014 May 15.

PMID:
24846398
9.

Identification and quantification of free, conjugate and total phenolic compounds in leaves of 20 sweetpotato cultivars by HPLC-DAD and HPLC-ESI-MS/MS.

Luo C, Wang X, Gao G, Wang L, Li Y, Sun C.

Food Chem. 2013 Dec 1;141(3):2697-706. doi: 10.1016/j.foodchem.2013.05.009. Epub 2013 May 15.

PMID:
23871013
10.

Role of β-catenin and TCF/LEF family members in transcriptional activity of HIV in astrocytes.

Narasipura SD, Henderson LJ, Fu SW, Chen L, Kashanchi F, Al-Harthi L.

J Virol. 2012 Feb;86(4):1911-21. doi: 10.1128/JVI.06266-11. Epub 2011 Dec 7.

11.

Targeting beta-catenin signaling to induce apoptosis in human breast cancer cells by z-guggulsterone and Gugulipid extract of Ayurvedic medicine plant Commiphora mukul.

Jiang G, Xiao X, Zeng Y, Nagabhushanam K, Majeed M, Xiao D.

BMC Complement Altern Med. 2013 Aug 3;13:203. doi: 10.1186/1472-6882-13-203.

12.

β-catenin/Tcf-4 complex transcriptionally regulates AKT1 in glioma.

Chen L, Huang K, Han L, Shi Z, Zhang K, Pu P, Jiang C, Kang C.

Int J Oncol. 2011 Oct;39(4):883-90. doi: 10.3892/ijo.2011.1104. Epub 2011 Jun 29.

PMID:
21720709
13.

High β-catenin/Tcf-4 activity confers glioma progression via direct regulation of AKT2 gene expression.

Zhang J, Huang K, Shi Z, Zou J, Wang Y, Jia Z, Zhang A, Han L, Yue X, Liu N, Jiang T, You Y, Pu P, Kang C.

Neuro Oncol. 2011 Jun;13(6):600-9. doi: 10.1093/neuonc/nor034.

14.

TCTP promotes glioma cell proliferation in vitro and in vivo via enhanced β-catenin/TCF-4 transcription.

Gu X, Yao L, Ma G, Cui L, Li Y, Liang W, Zhao B, Li K.

Neuro Oncol. 2014 Jan;16(2):217-27. doi: 10.1093/neuonc/not194. Epub 2013 Dec 4.

15.

Effects of domestic cooking methods on polyphenols and antioxidant activity of sweet potato leaves.

Sun H, Mu T, Xi L, Song Z.

J Agric Food Chem. 2014 Sep 10;62(36):8982-9. doi: 10.1021/jf502328d. Epub 2014 Aug 28.

PMID:
25152015
16.

Structure-based discovery of a novel inhibitor targeting the β-catenin/Tcf4 interaction.

Tian W, Han X, Yan M, Xu Y, Duggineni S, Lin N, Luo G, Li YM, Han X, Huang Z, An J.

Biochemistry. 2012 Jan 17;51(2):724-31. doi: 10.1021/bi201428h. Epub 2012 Jan 6.

PMID:
22224445
17.

GPR48, a poor prognostic factor, promotes tumor metastasis and activates β-catenin/TCF signaling in colorectal cancer.

Wu J, Xie N, Xie K, Zeng J, Cheng L, Lei Y, Liu Y, Song L, Dong D, Chen Y, Zeng R, Nice EC, Huang C, Wei Y.

Carcinogenesis. 2013 Dec;34(12):2861-9. doi: 10.1093/carcin/bgt229. Epub 2013 Jun 26.

PMID:
23803691
18.

Enzymatic production of caffeic acid by koji from plant resources containing caffeoylquinic acid derivatives.

Yoshimoto M, Kurata-Azuma R, Fujii M, Hou DX, Ikeda K, Yoshidome T, Osako M.

Biosci Biotechnol Biochem. 2005 Sep;69(9):1777-81.

19.

[Effects of NGX6 on the transcriptional activation of beta-catenin/TCF/LEF in Wnt/beta-catenin signal pathway].

Liu F, Shen SR, Li HT, Wang XY, Peng Y, Liao MT, Guo Q.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2007 Dec;32(6):985-91. Chinese.

20.

The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells.

Ungerbäck J, Elander N, Grünberg J, Sigvardsson M, Söderkvist P.

PLoS One. 2011 Mar 18;6(3):e17957. doi: 10.1371/journal.pone.0017957.

Supplemental Content

Support Center