Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 228


Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity.

Zeriouh H, de Vicente A, Pérez-García A, Romero D.

Environ Microbiol. 2014 Jul;16(7):2196-211. doi: 10.1111/1462-2920.12271. Epub 2013 Oct 6.


Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani.

Luo C, Zhou H, Zou J, Wang X, Zhang R, Xiang Y, Chen Z.

Appl Microbiol Biotechnol. 2015 Feb;99(4):1897-910. doi: 10.1007/s00253-014-6195-4. Epub 2014 Nov 16.


The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca.

Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A.

Mol Plant Microbe Interact. 2007 Apr;20(4):430-40.


The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits.

Zeriouh H, Romero D, Garcia-Gutierrez L, Cazorla FM, de Vicente A, Perez-Garcia A.

Mol Plant Microbe Interact. 2011 Dec;24(12):1540-52. doi: 10.1094/MPMI-06-11-0162.


Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides?

Yamamoto S, Shiraishi S, Suzuki S.

Lett Appl Microbiol. 2015 Apr;60(4):379-86. doi: 10.1111/lam.12382. Epub 2015 Jan 12.


Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the Pspac promoter.

Sun H, Bie X, Lu F, Lu Y, Wu Y, Lu Z.

Can J Microbiol. 2009 Aug;55(8):1003-6. doi: 10.1139/w09-044.


Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC.

Jung J, Yu KO, Ramzi AB, Choe SH, Kim SW, Han SO.

Biotechnol Bioeng. 2012 Sep;109(9):2349-56. doi: 10.1002/bit.24524. Epub 2012 Apr 24.


The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses.

García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-García A.

Microb Biotechnol. 2013 May;6(3):264-74. doi: 10.1111/1751-7915.12028. Epub 2013 Jan 10.


Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus.

Aleti G, Lehner S, Bacher M, Compant S, Nikolic B, Plesko M, Schuhmacher R, Sessitsch A, Brader G.

Environ Microbiol. 2016 Sep;18(8):2634-45. doi: 10.1111/1462-2920.13405. Epub 2016 Jul 4.


DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2.

Wang P, Guo Q, Ma Y, Li S, Lu X, Zhang X, Ma P.

Microbiol Res. 2015 Sep;178:42-50. doi: 10.1016/j.micres.2015.06.006. Epub 2015 Jul 2.


The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease.

Alvarez F, Castro M, Príncipe A, Borioli G, Fischer S, Mori G, Jofré E.

J Appl Microbiol. 2012 Jan;112(1):159-74. doi: 10.1111/j.1365-2672.2011.05182.x. Epub 2011 Nov 22.


Efficient colonization and harpins mediated enhancement in growth and biocontrol of wilt disease in tomato by Bacillus subtilis.

Gao S, Wu H, Wang W, Yang Y, Xie S, Xie Y, Gao X.

Lett Appl Microbiol. 2013 Dec;57(6):526-33. doi: 10.1111/lam.12144. Epub 2013 Sep 17.


Loss of GltB Inhibits Biofilm Formation and Biocontrol Efficiency of Bacillus subtilis Bs916 by Altering the Production of γ-Polyglutamate and Three Lipopeptides.

Zhou H, Luo C, Fang X, Xiang Y, Wang X, Zhang R, Chen Z.

PLoS One. 2016 May 25;11(5):e0156247. doi: 10.1371/journal.pone.0156247. eCollection 2016.


Plant defense stimulation by natural isolates of bacillus depends on efficient surfactin production.

Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P, Dommes J, Ongena M.

Mol Plant Microbe Interact. 2014 Feb;27(2):87-100. doi: 10.1094/MPMI-09-13-0262-R.


ESI LC-MS and MS/MS characterization of antifungal cyclic lipopeptides produced by Bacillus subtilis XF-1.

Li XY, Mao ZC, Wang YH, Wu YX, He YQ, Long CL.

J Mol Microbiol Biotechnol. 2012;22(2):83-93. doi: 10.1159/000338530. Epub 2012 May 16.


Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin.

Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Morikawa M, Kanaya S.

Extremophiles. 2002 Dec;6(6):499-506. Epub 2002 Sep 13.


Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis.

Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P.

Appl Microbiol Biotechnol. 2005 Nov;69(1):29-38. Epub 2005 Oct 20.


Supplemental Content

Support Center